cv_risk_mod_random_start {riskscores} | R Documentation |
Run Cross-Validation to Tune Lambda0 with Random Start
Description
Runs k-fold cross-validation on a grid of values
using random warm starts (see risk_mod_random_start. Records
class accuracy and deviance for each
. Returns an
object of class "cv_risk_mod".
Usage
cv_risk_mod_random_start(
X,
y,
weights = NULL,
a = -10,
b = 10,
max_iters = 100,
tol = 1e-05,
nlambda = 25,
lambda_min_ratio = ifelse(nrow(X) < ncol(X), 0.01, 1e-04),
lambda0 = NULL,
nfolds = 10,
foldids = NULL,
parallel = FALSE,
seed = NULL,
nstart = 5
)
Arguments
X |
Input covariate matrix with dimension |
y |
Numeric vector for the (binomial) response variable. |
weights |
Numeric vector of length |
a |
Integer lower bound for coefficients (default: -10). |
b |
Integer upper bound for coefficients (default: 10). |
max_iters |
Maximum number of iterations (default: 100). |
tol |
Tolerance for convergence (default: 1e-5). |
nlambda |
Number of lambda values to try (default: 25). |
lambda_min_ratio |
Smallest value for lambda, as a fraction of
lambda_max (the smallest value for which all coefficients are zero).
The default depends on the sample size ( |
lambda0 |
Optional sequence of lambda values. By default, the function
will derive the lambda0 sequence based on the data (see |
nfolds |
Number of folds, implied if |
foldids |
Optional vector of values between 1 and |
parallel |
If |
seed |
An integer that is used as argument by |
nstart |
Number of different random starts to try (default: 5). |