SISTCopula {riskSimul} | R Documentation |
Efficient tail-loss probability and conditional excess estimation for t-copula model
Description
Using stratified importance sampling (SIS) or naive simulation (NV) the tail-loss probabilities and conditional excess values for several threshold values are estimated for a stock portfolio. The logreturns of the stocks are assumed to follow a t-copula model with generalized hyperbolic or t marginals.
Usage
SISTCopula(n=10^5,npilot=c(10^4,2*10^4),portfobj,threshold=c(0.95,0.9),
stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=-1)
NVTCopula(n=10^5, portfobj, threshold=c(0.95,0.9))
new.portfobj(nu,R,typemg="GH",parmg,c=rep(1,dim(R)[1]),w=c/sum(c))
Arguments
n |
total sample size |
npilot |
size of one or several pilot runs, the sum of them should be smaller than |
portfobj |
object of portfolio parameters |
threshold |
one or several threshold values (they should be ordered) |
stratasize |
a vector of length two holding the number of strata |
CEopt |
TRUE ... minimize the overall error of Conditional Exess estimates, otherwise of tail-loss estimates |
beta |
weight of maximal threshold value used for calculating the intermediate threshold used for selecting the IS density,
only used when |
mintype |
only used when |
nu |
degrees of freedom of the t-copula |
R |
correlation matrix of the t-copula |
typemg |
type of the marginal distribution, |
parmg |
matrix holding in its rows the parameters of the marginal distribution; for the generalized hyperbolic distribution each row holds the parameters lambda, alpha, beta, delta and mu; for the t-distribution each row holds the parameters mu, sigma and nu (degrees of freedom). |
c |
scale factor vector of the portfolio |
w |
portfolio weights |
Value
For the case that the variable threshold
contains only one value a matrix containing
the results for the tail-loss probability in the first row and that of the conditional excess in the second row
is returned.
In the case that several threshold values are considered, a list consisting of the result matrices for tail-loss probabilities and for conditional excess and the vector of the threshold values is returned.
Author(s)
Ismail Basoglu, Wolfgang Hormann
Examples
R<- matrix(
c(1, 0.554, 0.632, 0.419, 0.400,
0.554,1, 0.495, 0.540, 0.479,
0.632,0.495, 1, 0.426, 0.445,
0.419,0.540, 0.426, 1, 0.443,
0.400,0.479, 0.445, 0.443, 1),ncol=5)
pmg<- matrix(NA,ncol=5,nrow=5)
colnames(pmg) <- c("lambda","alpha","beta","delta","mu")
pmg[1,] <- c(-0.602828, 8.52771, -0.533197, 0.014492, -0.000091)
pmg[2,] <- c(-1.331923, 2.72759, -2.573416, 0.019891, 0.001388)
pmg[3,] <- c(-1.602705, 3.26482, 1.456542, 0.035139, -0.001662)
pmg[4,] <- c(-1.131092, 15.13351, -1.722396, 0.014771, 0.001304)
pmg[5,] <- c(-0.955118, 31.14005, 0.896576, 0.015362, -0.000238)
portfo <- new.portfobj(nu=8.195,R=R,typemg="GH",parmg=pmg,c=rep(1,5),w=rep(0.2,5))
res1<- SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94),
stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=0)
res1
SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=0.94,
stratasize=c(22,22),CEopt=FALSE)
NVTCopula(n=10^4,portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94))
NVTCopula(n=10^4,portfobj=portfo,threshold=0.94)
########
# example with t-marginals
R<- matrix(
c(1, 0.551, 0.636, 0.421, 0.398,
0.551,1, 0.496, 0.540, 0.477,
0.636,0.496, 1, 0.428, 0.447,
0.421,0.540, 0.428, 1, 0.444,
0.398,0.477, 0.447, 0.444, 1),ncol=5)
pmg<- matrix(NA,ncol=3,nrow=5)
colnames(pmg) <- c("mu","sigma","nu")
pmg[1,] <- c(-0.000258, 0.013769, 1.78)
pmg[2,] <- c(0.000794, 0.012166, 2.64)
pmg[3,] <- c(-0.000837, 0.019616, 3.25)
pmg[4,] <- c(0.001041, 0.009882, 2.67)
pmg[5,] <- c(-0.000104, 0.010812, 3.10)
portfo <- new.portfobj(nu=7.525,R=R,typemg="t",parmg=pmg,c=rep(1,5),w=rep(0.2,5))
res1<- SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94),
stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=0)
res1
SISTCopula(n=10^4,npilot=c(10^3,3000),portfobj=portfo,threshold=0.94,stratasize=c(22,22))
NVTCopula(n=10^4,portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94))
NVTCopula(n=10^4,portfobj=portfo,threshold=0.94)