getScore {riskPredictClustData} | R Documentation |
Get data frame for the function riskPredict
Description
Get data frame for the function riskPredict.
Usage
getScore(fmla, cidVar, subuidVar, statusVar, datFrame, mycorstr = "exchangeable",
verbose = FALSE)
Arguments
fmla |
A formula object for the function |
cidVar |
character. Phenotype variable name for cluster id |
subuidVar |
character. Phenotype variable name for unit id |
statusVar |
character. Phenotype variable name for progression status |
datFrame |
A data frame with at least 3 columns corresponding to |
mycorstr |
character. indicates correlation structure. see the manual for the function |
verbose |
logical. indicating if summary of gee results should be printed out. |
Value
A list with two elements: frame
and gee.obj
.
frame
is a data frame with at least 4 columns: cid, subuid, status, and score.
cid
indicates cluster id; subuid
indicates unit ID within a cluster;
status=1
indicates an eye is progressed;
status=0
indicates an eye is not progressed;
score
represents the risk score.
gee.obj
is the object returned by gee
function.
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Weiliang Qiu <Weiliang.Qiu@gmail.com>, Meiling Ting Lee <MLTLEE@umd.edu>
References
Rosner B, Qiu W, and Lee MLT. Assessing Discrimination of Risk Prediction Rules in a Clustered Data Setting. Lifetime Data Anal. 2013 Apr; 19(2): 242-256.
Examples
set.seed(1234567)
datFrame = genSimDataGLMEM(nSubj = 30, beta0 = -6, sd.beta0i = 1.58,
beta1 = 1.58, beta2 = -3.95, beta3 = 3.15, beta4 = 2.06,
beta5 = 0.51, beta6 = 1.47, beta7 = 3.11,
p.smkcur = 0.08, p.inieye31 = 0.44, p.inieye32 = 0.42,
p.inieye41 = 0.12, p.inieye42 = 0.11, sd.lncalorc = 0.33)
print(dim(datFrame))
print(datFrame[1:2,])
tt1 = getScore(fmla = prog~smkcur+lncalorc+inieye3+inieye4+factor(rtotfat),
cidVar = "cid", subuidVar = "subuid", statusVar = "prog",
datFrame = datFrame, mycorstr = "exchangeable",
verbose = FALSE)
myframe1=tt1$frame
gee.obj=tt1$gee.obj
print(summary(gee.obj))
print(dim(myframe1))
print(myframe1[1:3,])