genSimDataGLMEM {riskPredictClustData} | R Documentation |
Generate simulated data from logistic mixed effects model based on the AMD data
Description
Generate simulated data from logistic mixed effects model based on the AMD data.
Usage
genSimDataGLMEM(
nSubj = 131,
beta0 = -6,
sd.beta0i = 1.58,
beta1 = 1.58,
beta2 = -3.95,
beta3 = 3.15,
beta4 = 2.06,
beta5 = 0.51,
beta6 = 1.47,
beta7 = 3.11,
p.smkcur = 0.08,
p.inieye31 = 0.44,
p.inieye32 = 0.42,
p.inieye41 = 0.12,
p.inieye42 = 0.11,
sd.lncalorc = 0.33)
Arguments
nSubj |
integer. Number of subjects. Each subject would have data for 2 eyes. |
beta0 |
mean of intercept |
sd.beta0i |
standard deviation |
beta1 |
slope for the binary covariate |
beta2 |
slope for the continuous mean-centered covariate |
beta3 |
slope for the binary covariate |
beta4 |
slope for the binary covariate |
beta5 |
slope for the binary covariate |
beta6 |
slope for the binary covariate |
beta7 |
slope for the binary covariate |
p.smkcur |
proportion of current smokers. |
p.inieye31 |
proportion of left eye having inital grade equal to 3. |
p.inieye32 |
proportion of right eye having inital grade equal to 3. |
p.inieye41 |
proportion of left eye having inital grade equal to 4. |
p.inieye42 |
proportion of right eye having inital grade equal to 4. |
sd.lncalorc |
standard deviation for |
Details
We generate simulated data set from the following generalized linear mixed effects model:
\log\left(\frac{p_{ij}}{(1-p_{ij})}\right)=\beta_{0i}+\beta_1 smkcur_i+
\beta_2 lncalor_{ci} + \beta_3 inieye3_{ij} + \beta_4 inieye4_{ij}
+\beta_5 rtotfat_{1i} +\beta_6 rtotfat_{2i} + \beta_7 rtotfat_{3i},
i=1,\ldots, N, j=1, 2
,
\beta_{0i}\sim N\left(\beta_0, \sigma^2_{\beta}\right).
Value
A data frame with 8 columns: cid, subuid, prog, smkcur, lncalorc, inieye3, inieye4, and rtotfat,
where cid is the subject id, subuid is the unit id, and prog is the progression status.
prog=1
indicates the eye is progressed.
prog=0
indicates the eye is not progressed.
There are nSubj*2
rows. The first nSubj
rows
are for the left eyes and the second nSubj
rows are for the right eyes.
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Weiliang Qiu <Weiliang.Qiu@gmail.com>, Meiling Ting Lee <MLTLEE@umd.edu>
References
Rosner B, Qiu W, and Lee MLT. Assessing Discrimination of Risk Prediction Rules in a Clustered Data Setting. Lifetime Data Anal. 2013 Apr; 19(2): 242-256.
Examples
set.seed(1234567)
datFrame = genSimDataGLMEM(nSubj = 30, beta0 = -6, sd.beta0i = 1.58,
beta1 = 1.58, beta2 = -3.95, beta3 = 3.15, beta4 = 2.06,
beta5 = 0.51, beta6 = 1.47, beta7 = 3.11,
p.smkcur = 0.08, p.inieye31 = 0.44, p.inieye32 = 0.42,
p.inieye41 = 0.12, p.inieye42 = 0.11, sd.lncalorc = 0.33)
print(dim(datFrame))
print(datFrame[1:2,])