| genSimDataGLMEM {riskPredictClustData} | R Documentation | 
Generate simulated data from logistic mixed effects model based on the AMD data
Description
Generate simulated data from logistic mixed effects model based on the AMD data.
Usage
genSimDataGLMEM(
  nSubj = 131, 
  beta0 = -6, 
  sd.beta0i = 1.58, 
  beta1 = 1.58, 
  beta2 = -3.95, 
  beta3 = 3.15, 
  beta4 = 2.06, 
  beta5 = 0.51, 
  beta6 = 1.47, 
  beta7 = 3.11, 
  p.smkcur = 0.08, 
  p.inieye31 = 0.44, 
  p.inieye32 = 0.42, 
  p.inieye41 = 0.12, 
  p.inieye42 = 0.11, 
  sd.lncalorc = 0.33)
Arguments
| nSubj | integer. Number of subjects. Each subject would have data for 2 eyes. | 
| beta0 | mean of intercept  | 
| sd.beta0i | standard deviation  | 
| beta1 | slope for the binary covariate  | 
| beta2 | slope for the continuous mean-centered covariate  | 
| beta3 | slope for the binary covariate  | 
| beta4 | slope for the binary covariate  | 
| beta5 | slope for the binary covariate  | 
| beta6 | slope for the binary covariate  | 
| beta7 | slope for the binary covariate  | 
| p.smkcur | proportion of current smokers. | 
| p.inieye31 | proportion of left eye having inital grade equal to 3. | 
| p.inieye32 | proportion of right eye having inital grade equal to 3. | 
| p.inieye41 | proportion of left eye having inital grade equal to 4. | 
| p.inieye42 | proportion of right eye having inital grade equal to 4. | 
| sd.lncalorc | standard deviation for  | 
Details
We generate simulated data set from the following generalized linear mixed effects model:
\log\left(\frac{p_{ij}}{(1-p_{ij})}\right)=\beta_{0i}+\beta_1 smkcur_i+
\beta_2 lncalor_{ci} + \beta_3 inieye3_{ij} + \beta_4 inieye4_{ij} 
+\beta_5 rtotfat_{1i} +\beta_6 rtotfat_{2i} + \beta_7 rtotfat_{3i},
i=1,\ldots, N, j=1, 2,
\beta_{0i}\sim N\left(\beta_0, \sigma^2_{\beta}\right).
Value
A data frame with 8 columns: cid, subuid, prog, smkcur, lncalorc, inieye3, inieye4, and rtotfat,
where cid is the subject id, subuid is the unit id, and prog is the progression status.
prog=1 indicates the eye is progressed.
prog=0 indicates the eye is not progressed.
There are nSubj*2 rows. The first nSubj rows
are for the left eyes and the second nSubj rows are for the right eyes.
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Weiliang Qiu <Weiliang.Qiu@gmail.com>, Meiling Ting Lee <MLTLEE@umd.edu>
References
Rosner B, Qiu W, and Lee MLT. Assessing Discrimination of Risk Prediction Rules in a Clustered Data Setting. Lifetime Data Anal. 2013 Apr; 19(2): 242-256.
Examples
set.seed(1234567)
datFrame = genSimDataGLMEM(nSubj = 30, beta0 = -6, sd.beta0i = 1.58, 
                          beta1 = 1.58, beta2 = -3.95, beta3 = 3.15, beta4 = 2.06,
                          beta5 = 0.51, beta6 = 1.47, beta7 = 3.11, 
                          p.smkcur = 0.08, p.inieye31 = 0.44, p.inieye32 = 0.42,
                          p.inieye41 = 0.12, p.inieye42 = 0.11, sd.lncalorc = 0.33)
print(dim(datFrame))
print(datFrame[1:2,])