biv_lrt {ridgetorus} | R Documentation |
Tests of homogeneity and independence in bivariate sine von Mises and wrapped Cauchy distributions
Description
Performs the following likelihood ratio tests for the
concentrations in bivariate sine von Mises and wrapped Cauchy distributions:
(1) homogeneity: H_0:\kappa_1=\kappa_2
vs.
H_1:\kappa_1\neq\kappa_2
, and H_0:\xi_1=\xi_2
vs.
H_1:\xi_1\neq\xi_2
, respectively;
(2) independence: H_0:\lambda=0
vs.
H_1:\lambda\neq0
, and H_0:\rho=0
vs. H_1:\rho\neq0
.
The tests (1) and (2) can be performed simultaneously.
Usage
biv_lrt(x, hom = FALSE, indep = FALSE, fit_mle = NULL, type, ...)
Arguments
x |
matrix of dimension |
hom |
test the homogeneity hypothesis? Defaults to |
indep |
test the independence hypothesis? Defaults to |
fit_mle |
output of |
type |
either |
... |
optional parameters passed to |
Value
A list with class htest
:
statistic |
the value of the likelihood ratio test statistic. |
p.value |
the |
alternative |
a character string describing the alternative hypothesis. |
method |
description of the type of test performed. |
df |
degrees of freedom. |
data.name |
a character string giving the name of |
fit_mle |
maximum likelihood fit. |
fit_null |
maximum likelihood fit under the null hypothesis. |
References
Kato, S. and Pewsey, A. (2015). A Möbius transformation-induced distribution on the torus. Biometrika, 102(2):359–370. doi:10.1093/biomet/asv003
Singh, H., Hnizdo, V., and Demchuk, E. (2002). Probabilistic model for two dependent circular variables. Biometrika, 89(3):719–723. doi:10.1093/biomet/89.3.719
Examples
## Bivariate sine von Mises
# Homogeneity
n <- 200
mu <- c(0, 0)
kappa_0 <- c(1, 1, 0.5)
kappa_1 <- c(0.7, 0.1, 0.25)
samp_0 <- r_bvm(n = n, mu = mu, kappa = kappa_0)
samp_1 <- r_bvm(n = n, mu = mu, kappa = kappa_1)
biv_lrt(x = samp_0, hom = TRUE, type = "bvm")
biv_lrt(x = samp_1, hom = TRUE, type = "bvm")
# Independence
kappa_0 <- c(0, 1, 0)
kappa_1 <- c(1, 0, 1)
samp_0 <- r_bvm(n = n, mu = mu, kappa = kappa_0)
samp_1 <- r_bvm(n = n, mu = mu, kappa = kappa_1)
biv_lrt(x = samp_0, indep = TRUE, type = "bvm")
biv_lrt(x = samp_1, indep = TRUE, type = "bvm")
# Independence and homogeneity
kappa_0 <- c(3, 3, 0)
kappa_1 <- c(3, 1, 0)
samp_0 <- r_bvm(n = n, mu = mu, kappa = kappa_0)
samp_1 <- r_bvm(n = n, mu = mu, kappa = kappa_1)
biv_lrt(x = samp_0, indep = TRUE, hom = TRUE, type = "bvm")
biv_lrt(x = samp_1, indep = TRUE, hom = TRUE, type = "bvm")
## Bivariate wrapped Cauchy
# Homogeneity
xi_0 <- c(0.5, 0.5, 0.25)
xi_1 <- c(0.7, 0.1, 0.5)
samp_0 <- r_bwc(n = n, mu = mu, xi = xi_0)
samp_1 <- r_bwc(n = n, mu = mu, xi = xi_1)
biv_lrt(x = samp_0, hom = TRUE, type = "bwc")
biv_lrt(x = samp_1, hom = TRUE, type = "bwc")
# Independence
xi_0 <- c(0.1, 0.5, 0)
xi_1 <- c(0.3, 0.5, 0.2)
samp_0 <- r_bwc(n = n, mu = mu, xi = xi_0)
samp_1 <- r_bwc(n = n, mu = mu, xi = xi_1)
biv_lrt(x = samp_0, indep = TRUE, type = "bwc")
biv_lrt(x = samp_1, indep = TRUE, type = "bwc")
# Independence and homogeneity
xi_0 <- c(0.2, 0.2, 0)
xi_1 <- c(0.1, 0.2, 0.1)
samp_0 <- r_bwc(n = n, mu = mu, xi = xi_0)
samp_1 <- r_bwc(n = n, mu = mu, xi = xi_1)
biv_lrt(x = samp_0, indep = TRUE, hom = TRUE, type = "bwc")
biv_lrt(x = samp_1, indep = TRUE, hom = TRUE, type = "bwc")