hierBAPS {rhierbaps} | R Documentation |
hierBAPS
Description
Runs the hierBAPS algorithm of Cheng et al. 2013
Usage
hierBAPS(
snp.matrix,
max.depth = 2,
n.pops = floor(nrow(snp.matrix)/5),
quiet = FALSE,
n.extra.rounds = 0,
assignment.probs = FALSE,
n.cores = 1
)
Arguments
snp.matrix |
Character matrix of aligned sequences produced by load_fasta. |
max.depth |
Maximum depth of hierarchical search (default = 2). |
n.pops |
Maximum number of populations in the data (default = number of isolates/5) |
quiet |
Whether to suppress progress information (default=FALSE). |
n.extra.rounds |
The number of additional rounds to perform after the default hierBAPS settings (default=0). If set to Inf it will run until a local optimum is reached (this might take a long time). |
assignment.probs |
whether or not to calculate the assignment probabilities to each cluster (default=FALSE) |
n.cores |
The number of cores to use. |
Value
A list containing a dataframe indicating an assignment of each sequence to hierarchical clusters as well as the log marginal likelihoods for each level.
Author(s)
Gerry Tonkin-Hill
References
Cheng, Lu, Thomas R. Connor, Jukka Sirén, David M. Aanensen, and Jukka Corander. 2013. “Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software.” Molecular Biology and Evolution 30 (5): 1224–28.
Examples
snp.matrix <- load_fasta(system.file("extdata", "small_seqs.fa", package = "rhierbaps"))
hb <- hierBAPS(snp.matrix, max.depth=2, n.pops=20, quiet=FALSE)
snp.matrix <- load_fasta(system.file("extdata", "seqs.fa", package = "rhierbaps"))
system.time({hb <- hierBAPS(snp.matrix, max.depth=2, n.pops=20, quiet=FALSE)})