post_processing_rgm {rgm}R Documentation

Post-Processing for RGM (Random Graph Model)

Description

This function performs post-processing on simulated data and results from a Random Graph Model (RGM). It calculates mean posterior estimates, compares true and estimated edge probabilities, generates various diagnostic plots, and returns a list of these plots.

Usage

post_processing_rgm(simulated_data, results)

Arguments

simulated_data

A list containing simulated data from an RGM.

results

A list containing results from fitting an RGM to 'simulated_data'.

Value

A list containing ggplot objects for different diagnostics: - 'rgm_recovery': A plot comparing true and estimated probit values. - 'estimation_of_alpha': A plot comparing true and estimated alpha values. - 'posterior_distribution': A density plot of the posterior distribution of the beta parameter. - 'beta_convergence': A trace plot of the beta parameter across MCMC iterations. - 'roc_plot': A ROC plot for graph recovery performance. - 'edge_prob': A heatmap of posterior edge probabilities for each environment.


[Package rgm version 1.0.4 Index]