| SPDMetricBuresWasserstein {rgeomstats} | R Documentation |
Class for the Bures-Wasserstein Metric on the Manifold of Symmetric Positive Definite Matrices
Description
An R6::R6Class object implementing the
SPDMetricBuresWasserstein class. This is the class for the
Bures-Wasserstein metric on the SPD manifold
(Bhatia et al. 2019; Malagò et al. 2018).
Super classes
rgeomstats::PythonClass -> rgeomstats::Connection -> rgeomstats::RiemannianMetric -> SPDMetricBuresWasserstein
Public fields
nAn integer value specifying the shape of the matrices:
n \times n.
Methods
Public methods
Inherited methods
rgeomstats::PythonClass$get_python_class()rgeomstats::PythonClass$set_python_class()rgeomstats::Connection$christoffels()rgeomstats::Connection$curvature()rgeomstats::Connection$curvature_derivative()rgeomstats::Connection$directional_curvature()rgeomstats::Connection$directional_curvature_derivative()rgeomstats::Connection$exp()rgeomstats::Connection$geodesic()rgeomstats::Connection$geodesic_equation()rgeomstats::Connection$injectivity_radius()rgeomstats::Connection$ladder_parallel_transport()rgeomstats::Connection$log()rgeomstats::Connection$parallel_transport()rgeomstats::RiemannianMetric$closest_neighbor_index()rgeomstats::RiemannianMetric$cometric_matrix()rgeomstats::RiemannianMetric$diameter()rgeomstats::RiemannianMetric$dist()rgeomstats::RiemannianMetric$dist_broadcast()rgeomstats::RiemannianMetric$dist_pairwise()rgeomstats::RiemannianMetric$hamiltonian()rgeomstats::RiemannianMetric$inner_coproduct()rgeomstats::RiemannianMetric$inner_product()rgeomstats::RiemannianMetric$inner_product_derivative_matrix()rgeomstats::RiemannianMetric$metric_matrix()rgeomstats::RiemannianMetric$norm()rgeomstats::RiemannianMetric$normal_basis()rgeomstats::RiemannianMetric$normalize()rgeomstats::RiemannianMetric$random_unit_tangent_vec()rgeomstats::RiemannianMetric$sectional_curvature()rgeomstats::RiemannianMetric$squared_dist()rgeomstats::RiemannianMetric$squared_norm()
Method new()
The SPDMetricBuresWasserstein class constructor.
Usage
SPDMetricBuresWasserstein$new(n, py_cls = NULL)
Arguments
nAn integer value specifying the shape of the matrices:
n \times n.py_clsA Python object of class
SPDMetricBuresWasserstein. Defaults toNULLin which case it is instantiated on the fly using the other input arguments.
Returns
An object of class SPDMetricBuresWasserstein.
Method clone()
The objects of this class are cloneable with this method.
Usage
SPDMetricBuresWasserstein$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Author(s)
Yann Thanwerdas
References
Bhatia R, Jain T, Lim Y (2019).
“On the Bures–Wasserstein distance between positive definite matrices.”
Expositiones Mathematicae, 37(2), 165–191.
Malagò L, Montrucchio L, Pistone G (2018).
“Wasserstein Riemannian geometry of Gaussian densities.”
Information Geometry, 1(2), 137–179.