mlogloss {rfVarImpOOB} | R Documentation |
computes log loss for multiclass problem
Description
computes log loss for multiclass problem
Usage
mlogloss(actual, pred_m, eps = 0.001)
Arguments
actual |
integer vector with truth labels, values range from 0 to n - 1 classes |
pred_m |
predicted probs: column 1 => label 0, column 2 => label 1 and so on |
eps |
numerical cutoff taken very high |
Author(s)
Markus Loecher <Markus.Loecher@gmail.com>
Examples
# require(nnet)
# set.seed(1)
# actual = as.integer(iris$Species) - 1
# fit = nnet(Species ~ ., data = iris, size = 2)
# pred = predict(fit, iris)#note this is a 3-column prediction matrix!
#
# mlogloss(actual, pred) # 0.03967
#library(titanic)
#baseline prediction
#data(titanic_train, package="titanic")
yHat = mean(titanic_train$Survived)#0.383838
mlogloss(titanic_train$Survived,yHat)
#try factors
titanic_train$Survived = as.factor(titanic_train$Survived)
mlogloss(titanic_train$Survived,yHat)
[Package rfVarImpOOB version 1.0.3 Index]