rprior_prob {revdbayes} | R Documentation |
Prior simulation of GEV parameters - prior on probability scale
Description
Simulates from the prior distribution for GEV parameters based on Crowder (1992), in which independent beta priors are specified for ratios of probabilities (which is equivalent to a Dirichlet prior on differences between these probabilities).
Usage
rprior_prob(n, quant, alpha, exc = FALSE, lb = NULL, lb_prob = 0.001)
Arguments
n |
A numeric scalar. The size of sample required. |
quant |
A numeric vector of length 3. Contains quantiles
|
alpha |
A numeric vector of length 4. Parameters of the Dirichlet distribution for the exceedance probabilities. |
exc |
A logical scalar. Let |
lb |
A numeric scalar. If this is not |
lb_prob |
A numeric scalar. The non-exceedance probability involved
in the specification of |
Details
The simulation is based on the way that the prior is constructed.
See Stephenson (1996) the evdbayes user guide or Northrop et al. (2017)
Northrop et al. (2017) for details of the construction of the prior.
First, differences between probabilities are simulated from a Dirichlet
distribution. Then the GEV location, scale and shape parameters that
correspond to these quantile values are found, by solving numerically a
set of three non-linear equations in which the GEV quantile function
evaluated at the simulated probabilities is equated to the quantiles in
quant
. This is reduced to a one-dimensional optimisation over the
GEV shape parameter.
Value
An n
by 3 numeric matrix.
References
Crowder, M. (1992) Bayesian priors based on parameter transformation using the distribution function. Ann. Inst. Statist. Math., 44(3), 405-416. https://link.springer.com/article/10.1007/BF00050695
Stephenson, A. 2016. Bayesian Inference for Extreme Value Modelling. In Extreme Value Modeling and Risk Analysis: Methods and Applications, edited by D. K. Dey and J. Yan, 257-80. London: Chapman and Hall. doi:10.1201/b19721
Northrop, P. J., Attalides, N. and Jonathan, P. (2017) Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity. Journal of the Royal Statistical Society Series C: Applied Statistics, 66(1), 93-120. doi:10.1111/rssc.12159
See Also
rpost
and rpost_rcpp
for sampling
from an extreme value posterior distribution.
Examples
quant <- c(85, 88, 95)
alpha <- c(4, 2.5, 2.25, 0.25)
x <- rprior_prob(n = 1000, quant = quant, alpha = alpha, exc = TRUE)
x <- rprior_prob(n = 1000, quant = quant, alpha = alpha, exc = TRUE, lb = 0)