rpost {revdbayes} | R Documentation |
Random sampling from extreme value posterior distributions
Description
Uses the ru
function in the rust
package to simulate from the posterior distribution of an extreme value
model.
Usage
rpost(
n,
model = c("gev", "gp", "bingp", "pp", "os"),
data,
prior,
...,
nrep = NULL,
thresh = NULL,
noy = NULL,
use_noy = TRUE,
npy = NULL,
ros = NULL,
bin_prior = structure(list(prior = "bin_beta", ab = c(1/2, 1/2), class = "binprior")),
bin_param = "logit",
init_ests = NULL,
mult = 2,
use_phi_map = FALSE,
weights = NULL
)
Arguments
n |
A numeric scalar. The size of posterior sample required. |
model |
A character string. Specifies the extreme value model. |
data |
Sample data, of a format appropriate to the value of
|
prior |
A list specifying the prior for the parameters of the extreme
value model, created by |
... |
Further arguments to be passed to |
nrep |
A numeric scalar. If |
thresh |
A numeric scalar. Extreme value threshold applied to data.
Only relevant when |
noy |
A numeric scalar. The number of blocks of observations,
excluding any missing values. A block is often a year.
Only relevant, and must be supplied, if |
use_noy |
A logical scalar. Only relevant if model is "pp".
If |
npy |
A numeric scalar. The mean number of observations per year of data, after excluding any missing values, i.e. the number of non-missing observations divided by total number of years' worth of non-missing data. The value of |
ros |
A numeric scalar. Only relevant when |
bin_prior |
A list specifying the prior for a binomial probability
|
bin_param |
A character scalar. The argument |
init_ests |
A numeric vector. Initial parameter estimates for search for the mode of the posterior distribution. |
mult |
A numeric scalar. The grid of values used to choose the Box-Cox transformation parameter lambda is based on the maximum a posteriori (MAP) estimate +/- mult x estimated posterior standard deviation. |
use_phi_map |
A logical scalar. If trans = "BC" then |
weights |
An optional numeric vector of weights by which to multiply
the observations when constructing the log-likelihood.
Currently only implemented for |
Details
Generalised Pareto (GP): model = "gp"
. A model for threshold
excesses. Required arguments: n
, data
and prior
.
If thresh
is supplied then only the values in data
that
exceed thresh
are used and the GP distribution is fitted to the
amounts by which those values exceed thresh
.
If thresh
is not supplied then the GP distribution is fitted to
all values in data
, in effect thresh = 0
.
See also gp
.
Binomial-GP: model = "bingp"
. The GP model for threshold
excesses supplemented by a binomial(length(data)
, p
)
model for the number of threshold excesses. See Northrop et al. (2017)
for details. Currently, the GP and binomial parameters are assumed to
be independent a priori.
Generalised extreme value (GEV) model: model = "gev"
. A
model for block maxima. Required arguments: n
, data
,
prior
. See also gev
.
Point process (PP) model: model = "pp"
. A model for
occurrences of threshold exceedances and threshold excesses. Required
arguments: n
, data
, prior
, thresh
and
noy
.
r-largest order statistics (OS) model: model = "os"
.
A model for the largest order statistics within blocks of data.
Required arguments: n
, data
, prior
. All the values
in data
are used unless ros
is supplied.
Parameter transformation. The scalar logical arguments (to the
function ru
) trans
and rotate
determine,
respectively, whether or not Box-Cox transformation is used to reduce
asymmetry in the posterior distribution and rotation of parameter
axes is used to reduce posterior parameter dependence. The default
is trans = "none"
and rotate = TRUE
.
See the Introducing revdbayes vignette for further details and examples.
Value
An object (list) of class "evpost"
, which has the same
structure as an object of class "ru"
returned from
ru
.
In addition this list contains
model: |
The argument |
data: |
The content depends on |
prior: |
The argument |
If nrep
is not NULL
then this list also contains
data_rep
, a numerical matrix with nrep
rows. Each
row contains a replication of the original data data
simulated from the posterior predictive distribution.
If model = "bingp"
or "pp"
then the rate of threshold
exceedance is part of the inference. Therefore, the number of values in
data_rep
that lie above the threshold varies between
predictive replications (different rows of data_rep
).
Values below the threshold are left-censored at the threshold, i.e. they
are set at the threshold.
If model == "pp"
then this list also contains the argument
noy
to rpost
detailed above.
If the argument npy
was supplied then this list also contains
npy
.
If model == "gp"
or model == "bingp"
then this list also
contains the argument thresh
to rpost
detailed above.
If model == "bingp"
then this list also contains
bin_sim_vals: |
An |
bin_logf: |
A function returning the log-posterior for
|
bin_logf_args: |
A list of arguments to |
References
Coles, S. G. and Powell, E. A. (1996) Bayesian methods in extreme value modelling: a review and new developments. Int. Statist. Rev., 64, 119-136.
Northrop, P. J., Attalides, N. and Jonathan, P. (2017) Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity. Journal of the Royal Statistical Society Series C: Applied Statistics, 66(1), 93-120. doi:10.1111/rssc.12159
Stephenson, A. (2016) Bayesian Inference for Extreme Value Modelling. In Extreme Value Modeling and Risk Analysis: Methods and Applications, edited by D. K. Dey and J. Yan, 257-80. London: Chapman and Hall. doi:10.1201/b19721 value posterior using the evdbayes package.
Wadsworth, J. L., Tawn, J. A. and Jonathan, P. (2010) Accounting for choice of measurement scale in extreme value modeling. The Annals of Applied Statistics, 4(3), 1558-1578. doi:10.1214/10-AOAS333
See Also
set_prior
for setting a prior distribution.
rpost_rcpp
for faster posterior simulation using
the Rcpp package.
plot.evpost
, summary.evpost
and
predict.evpost
for the S3 plot
, summary
and predict
methods for objects of class evpost
.
ru
and ru_rcpp
in the
rust
package for details of the arguments that can
be passed to ru
and the form of the object returned by
rpost
.
find_lambda
and
find_lambda_rcpp
in the rust
package is used inside rpost
to set the Box-Cox transformation
parameter lambda when the trans = "BC"
argument is given.
Examples
# GP model
u <- quantile(gom, probs = 0.65)
fp <- set_prior(prior = "flat", model = "gp", min_xi = -1)
gpg <- rpost(n = 1000, model = "gp", prior = fp, thresh = u, data = gom)
plot(gpg)
# Binomial-GP model
u <- quantile(gom, probs = 0.65)
fp <- set_prior(prior = "flat", model = "gp", min_xi = -1)
bp <- set_bin_prior(prior = "jeffreys")
bgpg <- rpost(n = 1000, model = "bingp", prior = fp, thresh = u, data = gom,
bin_prior = bp)
plot(bgpg, pu_only = TRUE)
plot(bgpg, add_pu = TRUE)
# Setting the same binomial (Jeffreys) prior by hand
beta_prior_fn <- function(p, ab) {
return(stats::dbeta(p, shape1 = ab[1], shape2 = ab[2], log = TRUE))
}
jeffreys <- set_bin_prior(beta_prior_fn, ab = c(1 / 2, 1 / 2))
bgpg <- rpost(n = 1000, model = "bingp", prior = fp, thresh = u, data = gom,
bin_prior = jeffreys)
plot(bgpg, pu_only = TRUE)
plot(bgpg, add_pu = TRUE)
# GEV model
mat <- diag(c(10000, 10000, 100))
pn <- set_prior(prior = "norm", model = "gev", mean = c(0, 0, 0), cov = mat)
gevp <- rpost(n = 1000, model = "gev", prior = pn, data = portpirie)
plot(gevp)
# GEV model, informative prior constructed on the probability scale
pip <- set_prior(quant = c(85, 88, 95), alpha = c(4, 2.5, 2.25, 0.25),
model = "gev", prior = "prob")
ox_post <- rpost(n = 1000, model = "gev", prior = pip, data = oxford)
plot(ox_post)
# PP model
pf <- set_prior(prior = "flat", model = "gev", min_xi = -1)
ppr <- rpost(n = 1000, model = "pp", prior = pf, data = rainfall,
thresh = 40, noy = 54)
plot(ppr)
# PP model, informative prior constructed on the quantile scale
piq <- set_prior(prob = 10^-(1:3), shape = c(38.9, 7.1, 47),
scale = c(1.5, 6.3, 2.6), model = "gev", prior = "quant")
rn_post <- rpost(n = 1000, model = "pp", prior = piq, data = rainfall,
thresh = 40, noy = 54)
plot(rn_post)
# OS model
mat <- diag(c(10000, 10000, 100))
pv <- set_prior(prior = "norm", model = "gev", mean = c(0, 0, 0), cov = mat)
osv <- rpost(n = 1000, model = "os", prior = pv, data = venice)
plot(osv)