| gp_pwm {revdbayes} | R Documentation |
Probability-weighted moments estimation of generalised Pareto parameters
Description
Uses the methodology of Hosking and Wallis (1987) to estimate the parameters of the generalised Pareto (GP) distribution.
Usage
gp_pwm(gp_data, u = 0)
Arguments
gp_data |
A numeric vector of raw data, assumed to be a random sample from a probability distribution. |
u |
A numeric scalar. A threshold. The GP distribution is fitted to
the excesses of |
Value
A list with components
-
est: A numeric vector. PWM estimates of GP parameters\sigma(scale) and\xi(shape). -
se: A numeric vector. Estimated standard errors of\sigmaand\xi. -
cov: A numeric matrix. Estimate covariance matrix of the the PWM estimators of\sigmaand\xi.
References
Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, 29(3), 339-349. doi:10.2307/1269343.
See Also
gp for details of the parameterisation of the GP
distribution.
Examples
u <- quantile(gom, probs = 0.65)
gp_pwm(gom, u)