gp_pwm {revdbayes} | R Documentation |
Probability-weighted moments estimation of generalised Pareto parameters
Description
Uses the methodology of Hosking and Wallis (1987) to estimate the parameters of the generalised Pareto (GP) distribution.
Usage
gp_pwm(gp_data, u = 0)
Arguments
gp_data |
A numeric vector of raw data, assumed to be a random sample from a probability distribution. |
u |
A numeric scalar. A threshold. The GP distribution is fitted to
the excesses of |
Value
A list with components
-
est
: A numeric vector. PWM estimates of GP parameters\sigma
(scale) and\xi
(shape). -
se
: A numeric vector. Estimated standard errors of\sigma
and\xi
. -
cov
: A numeric matrix. Estimate covariance matrix of the the PWM estimators of\sigma
and\xi
.
References
Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, 29(3), 339-349. doi:10.2307/1269343.
See Also
gp
for details of the parameterisation of the GP
distribution.
Examples
u <- quantile(gom, probs = 0.65)
gp_pwm(gom, u)