local_fit {resemble}R Documentation

Local fit functions

Description

These functions define the way in which each local fit/prediction is done within each iteration in the mbl function.

Usage

local_fit_pls(pls_c, modified = FALSE, max_iter = 100, tol = 1e-6)

local_fit_wapls(min_pls_c, max_pls_c, modified = FALSE,
                max_iter = 100, tol = 1e-6)

local_fit_gpr(noise_variance = 0.001)

Arguments

pls_c

an integer indicating the number of pls components to be used in the local regressions when the partial least squares (local_fit_pls) method is used.

modified

a logical indicating whether the modified version of the pls algorithm (Shenk and Westerhaus, 1991 and Westerhaus, 2014). Default is FALSE.

max_iter

an integer indicating the maximum number of iterations in case tol is not reached. Defaul is 100.

tol

a numeric value indicating the convergence for calculating the scores. Default is 1-e6.

min_pls_c

an integer indicating the minimum number of pls components to be used in the local regressions when the weighted average partial least squares (local_fit_wapls) method is used. See details.

max_pls_c

integer indicating the maximum number of pls components to be used in the local regressions when the weighted average partial least squares (local_fit_wapls) method is used. See details.

noise_variance

a numeric value indicating the variance of the noise for Gaussian process local regressions (local_fit_gpr). Default is 0.001.

Details

These functions are used to indicate how to fit the regression models within the mbl function.

There are three possible options for performing these regressions:

The modified argument in the pls methods (local_fit_pls() and local_fit_wapls()) is used to indicate if a modified version of the pls algorithm (modified pls or mpls) is to be used. The modified pls was proposed Shenk and Westerhaus (1991, see also Westerhaus, 2014) and it differs from the standard pls method in the way the weights of the predictors (used to compute the matrix of scores) are obtained. While pls uses the covariance between response(s) and predictors (and later their deflated versions corresponding at each pls component iteration) to obtain these weights, the modified pls uses the correlation as weights. The authors indicate that by using correlation, a larger potion of the response variable(s) can be explained.

Value

An object of class local_fit mirroring the input arguments.

Author(s)

Leonardo Ramirez-Lopez

References

Shenk, J. S., & Westerhaus, M. O. 1991. Populations structuring of near infrared spectra and modified partial least squares regression. Crop Science, 31(6), 1548-1555.

Shenk, J., Westerhaus, M., and Berzaghi, P. 1997. Investigation of a LOCAL calibration procedure for near infrared instruments. Journal of Near Infrared Spectroscopy, 5, 223-232.

Rasmussen, C.E., Williams, C.K. Gaussian Processes for Machine Learning. Massachusetts Institute of Technology: MIT-Press, 2006.

Westerhaus, M. 2014. Eastern Analytical Symposium Award for outstanding Wachievements in near infrared spectroscopy: my contributions to Wnear infrared spectroscopy. NIR news, 25(8), 16-20.

See Also

mbl

Examples

local_fit_wapls(min_pls_c = 3, max_pls_c = 12)

[Package resemble version 2.2.3 Index]