biv.betab {repeated} | R Documentation |
Bivariate Beta-binomial Regression Models
Description
biv.betab
fits dependent (logit) linear regression models to a
bivariate beta-binomial distribution.
Usage
biv.betab(
freq,
x = NULL,
p,
depend = TRUE,
print.level = 0,
typsize = abs(p),
ndigit = 10,
gradtol = 1e-05,
stepmax = 10 * sqrt(p %*% p),
steptol = 1e-05,
iterlim = 100,
fscale = 1
)
Arguments
freq |
A matrix containing four columns corresponding to 00, 01, 10, and 11 responses. |
x |
A matrix of explanatory variables, containing pairs of columns, one for each response, and the same number of rows as freq. |
p |
Initial parameter estimates: intercept, dependence (if depend is TRUE, and one for each pair of columns of x. |
depend |
If FALSE, the independence (logistic) model is fitted. |
print.level |
Arguments for nlm. |
typsize |
Arguments for nlm. |
ndigit |
Arguments for nlm. |
gradtol |
Arguments for nlm. |
stepmax |
Arguments for nlm. |
steptol |
Arguments for nlm. |
iterlim |
Arguments for nlm. |
fscale |
Arguments for nlm. |
Value
A list of class bivbetab
is returned.
Author(s)
J.K. Lindsey
Examples
y <- matrix( c( 2, 1, 1,13,
4, 1, 3, 5,
3, 3, 1, 4,
15, 8, 1, 6),ncol=4,byrow=TRUE)
first <- c(0,0,1,1)
second <- c(0,1,0,1)
self <- cbind(first,second)
other <- cbind(second,first)
biv.betab(y,cbind(self,other),p=c(-1,2,1,1))
# independence
biv.betab(y,cbind(self,other),p=c(-1,1,1),dep=FALSE)
[Package repeated version 1.1.8 Index]