fourCycleStat {rem} | R Documentation |
Calculate four cycle statistics
Description
Calculate the endogenous network statistic fourCycle
that
measures the tendency for events to close four cycles in two-mode event sequences.
Usage
fourCycleStat(data, time, sender, target, halflife,
weight = NULL,
eventtypevar = NULL,
eventtypevalue = 'standard',
eventfiltervar = NULL,
eventfilterAB = NULL, eventfilterAJ = NULL,
eventfilterIB = NULL, eventfilterIJ = NULL,
eventvar = NULL,
variablename = 'fourCycle',
returnData = FALSE,
dataPastEvents = NULL,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL
)
Arguments
data |
A data frame containing all the variables. |
time |
Numeric variable that represents the event sequence. The variable has to be sorted in ascending order. |
sender |
A string (or factor or numeric) variable that represents the sender of the event. |
target |
A string (or factor or numeric) variable that represents the target of the event. |
halflife |
A numeric value that is used in the decay function.
The vector of past events is weighted by an exponential decay function using the specified halflife. The halflife parameter determins after how long a period the event weight should be halved. E.g. if |
weight |
An optional numeric variable that represents the weight of each event. If |
eventtypevar |
An optional variable that represents the type of the event. Use |
eventtypevalue |
An optional value (or set of values) used to specify how paste events should be filtered depending on their type. |
eventfiltervar |
An optinoal variable that allows filtering of past events using an event attribute. It can be a sender attribute, a target attribute, time or dyad attribute.
Use |
eventfilterAB |
An optional value used to specify how
paste events should be filtered depending on their attribute. Each distinct edge that form a four cycle can be filtered. |
eventfilterAJ |
see |
eventfilterIB |
see |
eventfilterIJ |
see |
eventvar |
An optional dummy variable with 0 values for null-events and 1 values for true events. If the |
variablename |
An optional value (or values) with the name the four cycle statistic variable should be given. To be used if |
returnData |
|
dataPastEvents |
An optional |
showprogressbar |
|
inParallel |
|
cluster |
An optional numeric or character value that defines the cluster. By specifying a single number, the cluster option uses the provided number of nodes to parallellize. By specifying a cluster using the |
Details
The fourCycleStat()
-function calculates an endogenous statistic that measures whether events have a tendency to form four cycles.
The effect is calculated as follows:
G_t = G_t(E) = (A, B, w_t),
G_t
represents the network of past events and includes all events E
. These events consist
each of a sender a \in A
and a target b \in B
and a weight function w_t
:
w_t(i, j) = \sum_{e:a = i, b = j} | w_e | \cdot e^{-(t-t_e)\cdot\frac{ln(2)}{T_{1/2}}} \cdot \frac{ln(2)}{T_{1/2}},
where w_e
is the event weight (usually a constant set to 1 for each event), t
is the current event time, t_e
is the past event time and T_{1/2}
is a halflife parameter.
For the four-cylce effect, the past events G_t
are filtered to include only events
where the current event closes an open four-cycle in the past.
fourCycle(G_t , a , b) = \sqrt[3]{\sum_{i \in A \& j \in B} w_t(a, j) \cdot w_t(i, b) \cdot w_t(i, j)}
An exponential decay function is used to model the effect of time on the endogenous statistics. The further apart the past event is from the present event, the less weight is given to this event. The halflife parameter in the fourCycleStat()
-function determins at which rate the weights of past events should be reduced. Therefore, if the one (or more) of the three events in the four cycle have ocurred further in the past, less weight is given to this four cycle because it becomes less likely that the two senders reacted to each other in the way the four cycle assumes.
The eventtypevar
- and eventfiltervar
-options help filter the past events more specifically. How they are filtered depends on the eventtypevalue
- and eventfilter__
-option.
Author(s)
Laurence Brandenberger laurence.brandenberger@eawag.ch
See Also
Examples
# create some data two-mode network event sequence data with
# a 'sender', 'target' and a 'time'-variable
sender <- c('A', 'B', 'A', 'C', 'A', 'D', 'F', 'G', 'A', 'B',
'B', 'C', 'D', 'E', 'F', 'B', 'C', 'D', 'E', 'C',
'A', 'F', 'E', 'B', 'C', 'E', 'D', 'G', 'A', 'G',
'F', 'B', 'C')
target <- c('T1', 'T2', 'T3', 'T2', 'T1', 'T4', 'T6', 'T2',
'T4', 'T5', 'T5', 'T5', 'T1', 'T6', 'T7', 'T2',
'T3', 'T1', 'T1', 'T4', 'T5', 'T6', 'T8', 'T2',
'T7', 'T1', 'T6', 'T7', 'T3', 'T4', 'T7', 'T8', 'T2')
time <- c('03.01.15', '04.01.15', '10.02.15', '28.02.15', '01.03.15',
'07.03.15', '07.03.15', '12.03.15', '04.04.15', '28.04.15',
'06.05.15', '11.05.15', '13.05.15', '17.05.15', '22.05.15',
'09.08.15', '09.08.15', '14.08.15', '16.08.15', '29.08.15',
'05.09.15', '25.09.15', '02.10.15', '03.10.15', '11.10.15',
'18.10.15', '20.10.15', '28.10.15', '04.11.15', '09.11.15',
'10.12.15', '11.12.15', '12.12.15')
type <- sample(c('con', 'pro'), 33, replace = TRUE)
important <- sample(c('important', 'not important'), 33,
replace = TRUE)
# combine them into a data.frame
dt <- data.frame(sender, target, time, type, important)
# create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = '%d.%m.%y',
data = dt, type = 'continuous',
byTime = "daily", returnData = TRUE,
sortData = TRUE)
# create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,
eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
returnInputData = TRUE)
## divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
## merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
dtrem$important <- dt$important[match(dtrem$eventID, dt$eventID)]
# manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime), ]
# calculate closing four-cycle statistic
dtrem$fourCycle <- fourCycleStat(data = dtrem,
time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 20)
# plot closing four-cycles over time:
library("ggplot2")
ggplot(dtrem, aes (eventTime, fourCycle,
group = factor(eventDummy), color = factor(eventDummy)) ) +
geom_point()+ geom_smooth()
# calculate positive closing four-cycles: general support
dtrem$fourCycle.pos <- fourCycleStat(data = dtrem,
time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'positive',
halflife = 20)
# calculate negative closing four-cycles: general opposition
dtrem$fourCycle.neg <- fourCycleStat(data = dtrem,
time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'negative',
halflife = 20)