relate {relatable} | R Documentation |
Map inputs from a vector of keys to a vector of values.
Description
relate
returns a vector Y = F(X)
where F
maps each element of input vector X
from its position in vector A
to its corresponding position in vector B
. Can be applied as a vectorised key-value dictionary with an optional default return value. Additional options restrict mapping types so relation F
must be a function, injective, surjective, etc.
relation
returns a reusable function F
that performs the same operation as relate
. In addition to providing a reusable function, if handle_duplicate_mappings = TRUE
, relation
checks for and eliminates duplicate mappings that would be invalid inputs for relate
. If report_properties = TRUE
, relation
also prints the restrictions the mapping from A
to B
conforms to.
Usage
relate(X, A, B, default = NA, atomic = TRUE, named = FALSE,
allow_default = TRUE, heterogeneous_outputs = FALSE,
handle_duplicate_mappings = FALSE, report_properties = FALSE,
relation_type = "func", restrictions = list(),
map_error_response = "warn")
relation(A, B, default = NA, atomic = TRUE, named = FALSE,
allow_default = TRUE, heterogeneous_outputs = FALSE,
handle_duplicate_mappings = FALSE, report_properties = FALSE,
relation_type = "func", restrictions = list(),
map_error_response = "warn")
Arguments
X |
A vector of inputs |
A |
A vector possible inputs ordered to correspond to desired outputs given by |
B |
A vector possible outputs ordered to correspond to each input to the relation given by |
default |
The default value to return if the value of |
atomic |
If |
named |
The elements of the returned vector |
allow_default |
If TRUE, the provided default will be returned when |
heterogeneous_outputs |
By default, elements |
handle_duplicate_mappings |
If |
report_properties |
If |
relation_type |
Ensure that the relation is restricted to a certain type, e.g. "bijection". See Details. |
restrictions |
A named list of logicals imposing constraints on the relation. These will only be used if relation_type is NULL. See Details. |
map_error_response |
How to deal with mapping errors caused by violated restrictions. Takes values "ignore", "warn", or "throw". |
Details
relate
returns vector of outputs Y = F(X)
where the F
is a relation defined by the collection of ordered pairs (a_i, b_i)
where a_i, b_i
are the i
th elements of A
and B
respectively. If F(x)
is undefined because x
is not in A
or it does not map to an element of B
, relate
will either return default
if allow_default = TRUE
. Otherwise the function will throw an error.
The relation F
can be restricted so it conforms to a particular type specified, for example relation_type = "one_to_many"
. If relation_type = NULL
, the properties are determined by restrictions specified with a named list, for example restrictions = list(min_one_y_per_x = TRUE)
. For all relations where min_one_y_per_x = FALSE
, only a list vector can be returned, so an error will be thrown if atomic = TRUE
. If A
and B
do not produce a relation that conforms to the specified type or restrictions, the value of map_error_response
will determine whether the relate
ignores the error, reports it, or throws it. The full list of restrictions and relation types are listed below:
Restrictions
NB: 1) The restrictions
argument is only used if relation_type = NULL
; 2) If relation is allowed to return multiple values, i.e. max_one_y_per_x = FALSE
, then atomic
must be set to FALSE
, otherwise an error will be throw; 3). All unspecified restrictions are assumed false, e.g.
restrictions = list()
is equivalent to
restrictions = list("min_one_y_per_x" = FALSE,
"min_one_x_per_y" = FALSE,
"max_one_y_per_x" = FALSE,
"max_one_x_per_y" = FALSE)
min_one_y_per_x
Guarantees at least one
y = F(x)
inB
exists for eachx
inA
. Returns an error if B is longer than A.min_one_x_per_y
Guarantees at least one
x
inA
exists for eachy
inB
such thaty = F(x)
. Returns an error if A is longer than B.max_one_y_per_x
Guarantees no more than one
y = F(x)
inB
exists for eachx
inA
. Returns an error if A contains duplicate elements.max_one_x_per_y
Guarantees no more than one
x
inA
exists for eachy
inB
such thaty = F(x)
. Returns an error if B contains duplicate elements.
Relation types
relation_type = "one_to_one"
One-to-one relations require that each element in the domain to map to at most one element in the codomain, and each element of the codomain to map from the only one element in the domain. There may still be elements in
A
that do not have a mapping to an element inB
, and vice versa. This is equivalent torestrictions = list("min_one_y_per_x" = FALSE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = TRUE)
relation_type = "many_to_many"
Many-to-many relations allow multiple elements in the domain to map to the same element of the codomain, and multiple elements of the codomain to map from the same element of the domain. This is equivalent to
restrictions = list("min_one_y_per_x" = FALSE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = FALSE, "max_one_x_per_y" = FALSE)
relation_type = "one_to_many"
One-to-many relations require each element of the domain to map to a distinct set of one or more elements in the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = FALSE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = FALSE, "max_one_x_per_y" = TRUE)
relation_type = "many_to_one"
Many-to-one relations allows sets of one or more elements in the domain to map to the same distinct element in the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = FALSE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = FALSE)
relation_type = "func"
Functions map each element in the domain to exactly one element in the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = TRUE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = FALSE)
relation_type = "injection"
A function is injective if every element of the domain maps to a unique element of the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = TRUE, "min_one_x_per_y" = FALSE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = TRUE)
relation_type = "surjection"
A function is surjective if every element of the codomain maps from an element of the domain. This is equivalent to
restrictions = list("min_one_y_per_x" = TRUE, "min_one_x_per_y" = TRUE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = FALSE)
relation_type = "bijection"
A function is bijective if it is both injective and surjective, i.e. a complete one-to-one mapping. This is equivalent to
restrictions = list("min_one_y_per_x" = TRUE, "min_one_x_per_y" = TRUE, "max_one_y_per_x" = TRUE, "max_one_x_per_y" = TRUE)
Examples
## Map from one vector to another
relate(c("a", "e", "i", "o", "u"), letters, LETTERS)
# [1] "A" "E" "I" "O" "U"
## or
caps <- relation(letters, LETTERS)
caps("t")
# [1] "T"
caps(c("p", "q", "r"))
# [1] "P" "Q" "R"
## Create a new column in a data frame
df <- data.frame(
name = c("Alice", "Bob", "Charlotte", "Dan", "Elise", "Frank"),
position = c("right", "lean-left", "left", "left", "lean-right", "no response")
)
positions <- c("left", "lean-left", "independent", "lean-right", "right")
colours <- c("darkblue", "lightblue", "green", "lightred", "darkred")
df$colour <- relate(df$position, positions, colours, default = "gray")
df
# name position colour
# 1 Alice right darkred
# 2 Bob lean-left lightblue
# 3 Charlotte left darkblue
# 4 Dan left darkblue
# 5 Elise lean-right lightred
# 6 Frank no response gray
## Authors have a many-to-many relation with books:
## a book can have multiple authors and authors can write multiple books
my_library <- data.frame(
author = c(
"Arendt",
"Austen-Smith",
"Austen-Smith",
"Austen-Smith",
"Banks",
"Banks",
"Camus",
"Camus",
"Arendt",
"Dryzek",
"Dunleavy"
),
work = c(
"The Human Condition",
"Social Choice and Voting Models",
"Information Aggregation, Rationality, and the Condorcet Jury Theorem",
"Positive Political Theory I",
"Information Aggregation, Rationality, and the Condorcet Jury Theorem",
"Positive Political Theory I",
"The Myth of Sisyphus",
"The Rebel",
"The Origins of Totalitarianism",
"Theories of the Democratic State",
"Theories of the Democratic State"
),
stringsAsFactors = FALSE
)
relate(
X = c("Arendt", "Austen-Smith", "Banks", "Dryzek", "Dunleavy"),
A = my_library$author,
B = my_library$work,
atomic = FALSE,
named = TRUE,
relation_type = "many_to_many"
)
# $Arendt
# [1] "The Human Condition" "The Origins of Totalitarianism"
#
# $`Austen-Smith`
# [1] "Social Choice and Voting Models"
# [2] "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
# [3] "Positive Political Theory I"
#
# $Banks
# [1] "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
# [2] "Positive Political Theory I"
#
# $Dryzek
# [1] "Theories of the Democratic State"
#
# $Dunleavy
# [1] "Theories of the Democratic State"
## Duplicate mappings will return multiple copies by default:
relate(
X = 1:3,
A = c(1, 2, 2, 3, 4, 5),
B = c('a', 'b', 'b', 'c', 'd', 'e'),
relation_type = "many_to_many",
atomic = FALSE
)
# [[1]]
# [1] "a"
#
# [[2]]
# [1] "b" "b"
#
# [[3]]
# [1] "c"
## Use handle_duplicate_mappings = TRUE to ignore these and avoid mapping errors.
nums_to_letters <- relation(
A = c(1, 2, 2, 3, 4, 5),
B = c('a', 'b', 'b', 'c', 'd', 'e'),
relation_type = "bijection",
handle_duplicate_mappings = TRUE
)
nums_to_letters(X = c(1, 2, 3))
# [1] "a" "b" "c"
## Use relation with report_properties = TRUE to determine the properties of specified relation
domain <- -3:3
image <- domain^2
relation(domain, image, report_properties = TRUE)
# Relation properties:
# min_one_y_per_x min_one_x_per_y max_one_y_per_x max_one_x_per_y
# TRUE TRUE TRUE FALSE