| nlshc {regtools} | R Documentation |
Heteroscedastic Nonlinear Regression
Description
Extension of nls to the heteroscedastic case.
Usage
nlshc(nlsout,type='HC')
Arguments
nlsout |
Object of type 'nls'. |
type |
Eickert-White algorithm to use. See documentation for nls. |
Details
Calls nls but then forms a different estimated covariance
matrix for the estimated regression coefficients, applying the
Eickert-White technique to handle heteroscedasticity. This then
gives valid statistical inference in that setting.
Some users may prefer to use nlsLM of the package
minpack.lm instead of nls. This is fine, as both
functions return objects of class 'nls'.
Value
Estimated covariance matrix
Author(s)
Norm Matloff
References
Zeileis A (2006), Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software, 16(9), 1–16, https://www.jstatsoft.org/v16/i09/.
Examples
# simulate data from a setting in which mean Y is
# 1 / (b1 * X1 + b2 * X2)
n <- 250
b <- 1:2
x <- matrix(rexp(2*n),ncol=2)
meany <- 1 / (x %*% b) # reg ftn
y <- meany + (runif(n) - 0.5) * meany # heterosced epsilon
xy <- cbind(x,y)
xy <- data.frame(xy)
# see nls() docs
nlout <- nls(X3 ~ 1 / (b1*X1+b2*X2),
data=xy,start=list(b1 = 1,b2=1))
nlshc(nlout)
[Package regtools version 1.7.0 Index]