| REGModel {regport} | R Documentation |
R6 class representing a regression model
Description
Contains fields storing data and methods to build, process and visualize a regression model. Currently, this class is designed for CoxPH and GLM regression models.
Public fields
dataa
data.tablestoring modeling data.recipean R
formulastoring model formula.termsall terms (covariables, i.e. columns) used for building model.
argsother arguments used for building model.
modela constructed model.
typemodel type (class).
resultmodel result, a object of
parameters_model. Can be converted into data.frame withas.data.frame()ordata.table::as.data.table().forest_datamore detailed data used for plotting forest.
Methods
Public methods
Method new()
Build a REGModel object.
Usage
REGModel$new(
data,
recipe,
...,
f = c("coxph", "binomial", "gaussian", "Gamma", "inverse.gaussian", "poisson",
"quasi", "quasibinomial", "quasipoisson"),
exp = NULL,
ci = 0.95
)Arguments
dataa
data.tablestoring modeling data.recipean R
formulaor a list with two elements 'x' and 'y', where 'x' is for covariables and 'y' is for label. See example for detail operation....other parameters passing to corresponding regression model function.
fa length-1 string specifying modeling function or family of
glm(), default is 'coxph'. Other options are members of GLM family, seestats::family(). 'binomial' is logistic, and 'gaussian' is linear.explogical, indicating whether or not to exponentiate the the coefficients.
ciconfidence Interval (CI) level. Default to 0.95 (95%). e.g.
survival::coxph().
Returns
a REGModel R6 object.
Method get_forest_data()
get tidy data for plotting forest.
Usage
REGModel$get_forest_data(separate_factor = FALSE, global_p = FALSE)
Arguments
separate_factorseparate factor/class as a blank row.
global_pif
TRUE, return global p value.
Method plot_forest()
plot forest.
Usage
REGModel$plot_forest(ref_line = NULL, xlim = NULL, ...)
Arguments
ref_linereference line, default is
1for HR.xlimlimits of x axis.
...other plot options passing to
forestploter::forest(). Also check https://github.com/adayim/forestploter to see more complex adjustment of the result plot.
Method plot()
print the REGModel$result with default plot methods from see package.
Usage
REGModel$plot(...)
Arguments
...other parameters passing to
plot()insee:::plot.see_parameters_modelfunction.
Method print()
print the REGModel object
Usage
REGModel$print(...)
Arguments
...unused.
Method clone()
The objects of this class are cloneable with this method.
Usage
REGModel$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
library(survival)
test1 <- data.frame(
time = c(4, 3, 1, 1, 2, 2, 3),
status = c(1, 1, 1, 0, 1, 1, 0),
x = c(0, 2, 1, 1, 1, 0, 0),
sex = c(0, 0, 0, 0, 1, 1, 1)
)
test1$sex <- factor(test1$sex)
# --------------
# Build a model
# --------------
# way 1:
mm <- REGModel$new(
test1,
Surv(time, status) ~ x + strata(sex)
)
mm
as.data.frame(mm$result)
if (require("see")) mm$plot()
mm$print() # Same as print(mm)
# way 2:
mm2 <- REGModel$new(
test1,
recipe = list(
x = c("x", "strata(sex)"),
y = c("time", "status")
)
)
mm2
# Add other parameters, e.g., weights
# For more, see ?coxph
mm3 <- REGModel$new(
test1,
recipe = list(
x = c("x", "strata(sex)"),
y = c("time", "status")
),
weights = c(1, 1, 1, 2, 2, 2, 3)
)
mm3$args
# ----------------------
# Another type of model
# ----------------------
library(stats)
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
data <- data.frame(treatment, outcome, counts)
mm4 <- REGModel$new(
data,
counts ~ outcome + treatment,
f = "poisson"
)
mm4
mm4$plot_forest()
mm4$get_forest_data()
mm4$plot_forest()