simulate_HMM_data {regmhmm} | R Documentation |
Simulate Hidden Markov Model (HMM) Data
Description
Generate synthetic HMM data for testing and validation purposes. This function creates a simulated dataset with specified parameters, including initial probabilities, transition probabilities, emission matrix, and noise covariates.
Usage
simulate_HMM_data(seed_num, p_noise, N, N_persub, parameters_setting)
Arguments
seed_num |
Seed for reproducibility. |
p_noise |
Number of noise covariates. |
N |
Number of subjects. |
N_persub |
Number of time points per subject. |
parameters_setting |
A list containing the parameters for the HMM. |
Value
A list containing the design matrix (X_array) and response variable matrix (y_mat).
Examples
seed_num <- 1
p_noise <- 2
N <- 100
N_persub <- 50
parameters_setting <- list(
init_vec = c(0.5, 0.5),
trans_mat = matrix(c(0.7, 0.3, 0.2, 0.8), nrow = 2, byrow = TRUE),
emis_mat = matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
)
simulated_data <- simulate_HMM_data(seed_num, p_noise, N, N_persub, parameters_setting)
[Package regmhmm version 1.0.0 Index]