plot_shiny {refund.shiny} | R Documentation |
plot_shiny The generic function for interactive plots of functional data analyses
Description
Interactive Plotting for Functional Data
Usage
plot_shiny(obj, ...)
Arguments
obj |
object to be plotted. Currently, allowed data types are |
... |
additional arguments passed to plotting functions |
Details
Function for interactive plotting of functional data analysis results.
This package builds on the refund
package: tools in refund
are used to
conduct analyses and functions in this package create interactive visualizations of the results
of those analyses. There are four major categories of analyses that can be viewed:
Functional principal components analyses implemented by
fpca.sc
,fpca.face
,fpca.ssvd
, andfpca2s
. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots.Function-on-scalar regression analyses implemented by
bayes_fosr
. Plots show the raw data colored by covariate values; fitted values depending on covariates; coefficient functions; and residuals.Multilevel functional principal components analyses implemented by
mfpca.sc
. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots for levels 1 and 2. #'Longitudinal functional principal components analyses
Value
This function outputs a shiny app based on the class of the input object.
Author(s)
Jeff Goldsmith jeff.goldsmith@columbia.edu, Julia Wrobel julia.wrobel@cuanschutz.edu
See Also
plot_shiny.fpca
, plot_shiny.mfpca
, plot_shiny.fosr
Examples
## Not run:
library(dplyr)
##### FPCA Example on real data #####
data(cd4)
SC = fpca.sc(cd4)
plot_shiny(SC)
##### FoSR Example #####
data(DTI)
DTI = DTI[complete.cases(DTI),]
fit.fosr = refund::bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fit.fosr)
##### FoSR Example with outliers #####
DTI$cca[1,] = DTI$cca[1,] + .4
DTI$cca[2,] = DTI$cca[2,] + .4
fosr.dti2 = bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fosr.dti2)
##### Longitudinal FoSR Examples #####
data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]
fosr.dti3 = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, Kp = 4, cov.method = "FPCA")
plot_shiny(fosr.dti3)
plot_shiny(fosr.dti3$fpca.obj)
##### LFPCA Example on real data #####
data(DTI)
MS <- subset(DTI, case ==1) # subset data with multiple sclerosis (MS) case
index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)
lfpca.dti1 <- fpca.lfda(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'lme',
mFPCA.pve = 0.95)
plot_shiny(lfpca.dti1)
lfpca.dti2 <- fpca.lfda(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'fpca.sc',
mFPCA.pve = 0.80, sFPCA.pve = 0.80)
plot_shiny(lfpca.dti2)
## End(Not run)