ref.summary {ref.ICAR} | R Documentation |
Parameter Summaries for MCMC Analysis
Description
Takes a matrix of MCMC chains, iterations, and acceptance values to return posterior summaries of the parameters, including posterior medians, intervals, and acceptance rates.
Usage
ref.summary(
MCMCchain,
tauc.MCMC,
sigma2.MCMC,
beta.MCMC,
phi.MCMC,
accept.phi,
accept.sigma2,
accept.tauc,
iters = 10000,
burnin = 5000
)
Arguments
MCMCchain |
Matrix of MCMC chains for the ICAR model parameters. |
tauc.MCMC |
MCMC chains for the spatial dependence parameter. |
sigma2.MCMC |
MCMC chains for the variance of the unstructured random effects. |
beta.MCMC |
MCMC chains for the fixed effect regression coefficients. |
phi.MCMC |
MCMC chains for the spatial random effects. |
accept.phi |
Final acceptance number for spatial random effects. |
accept.sigma2 |
Final acceptance number for variance of the unstructured random effects. |
accept.tauc |
Final acceptance number for the spatial dependence parameter. |
iters |
Number of MCMC iterations in |
burnin |
Number of MCMC iterations discarded as burn-in for |
Value
Parameter summaries
beta.median |
Posterior medians of the fixed effect regression coefficients. |
beta.hpd |
Highest Posterior Density intervals for the fixed effect regression coefficients. |
tauc.median |
Posterior median of the spatial dependence parameter. |
tauc.hpd |
Highest Posterior Density interval for the spatial dependence parameter. |
sigma2.median |
Posterior median of the unstructured random effects variance. |
sigma2.hpd |
Highest Posterior Density interval for the unstructured random effects variance. |
tauc.accept |
Final acceptance rate for the spatial dependence parameter. |
sigma2.accept |
Final acceptance rate for the unstructured random effects variance. |
Author(s)
Erica M. Porter, Matthew J. Keefe, Christopher T. Franck, and Marco A.R. Ferreira
Examples
## Refer to the vignette attached to the package.