rateReg {reda}R Documentation

Recurrent Events Regression Based on Counts and Rate Function

Description

This function fits recurrent event data (event counts) by gamma frailty model with spline rate function. The default model is the gamma frailty model with one piece constant baseline rate function, which is equivalent to negative binomial regression with the same shape and rate parameter in the gamma prior. Spline (including piecewise constant) baseline hazard rate function can be specified for the model fitting.

Usage

rateReg(
  formula,
  data,
  subset,
  na.action,
  start = list(),
  control = list(),
  contrasts = NULL,
  ...
)

rateReg.control(
  df = NULL,
  degree = 0L,
  knots = NULL,
  Boundary.knots = NULL,
  periodic = FALSE,
  verbose = TRUE,
  ...
)

Arguments

formula

Recur object produced by function Recur. The terminal events and risk-free episodes specified in Recur will be ignored since the model does not support them.

data

An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), usually the environment from which function rateReg is called.

subset

An optional vector specifying a subset of observations to be used in the fitting process.

na.action

A function that indicates what should the procedure do if the data contains NAs. The default is set by the na.action setting of options. The "factory-fresh" default is na.omit. Other possible values inlcude na.fail, na.exclude, and na.pass. See help(na.fail) for details.

start

An optional list of starting values for the parameters to be estimated in the model. See more in Section details.

control

An optional list of parameters to control the maximization process of negative log likelihood function and adjust the baseline rate function. See more in Section details.

contrasts

An optional list, whose entries are values (numeric matrices or character strings naming functions) to be used as replacement values for the contrasts replacement function and whose names are the names of columns of data containing factors. See contrasts.arg of model.matrix.default for details.

...

Other arguments passed to rateReg.control() and stats::constrOptim().

df

A nonnegative integer to specify the degree of freedom of baseline rate function. If argument knots or degree are specified, df will be neglected whether it is specified or not.

degree

A nonnegative integer to specify the degree of spline bases.

knots

A numeric vector that represents all the internal knots of baseline rate function. The default is NULL, representing no any internal knots.

Boundary.knots

A length-two numeric vector to specify the boundary knots for baseline rate funtion. By default, the left boundary knot is the smallest origin time and the right one takes the largest censoring time from data.

periodic

A logical value indicating if periodic splines should be used.

verbose

A logical value with default TRUE. Set it to FALSE to supress messages from this function.

Details

Function Recur in the formula response by default first checks the dataset and will report an error if the dataset does not fall into recurrent event data framework. Subject's ID will be pinpointed if its observation violates any checking rule. See Recur for all the checking rules.

Function rateReg first constructs the design matrix from the specified arguments: formula, data, subset, na.action and constrasts before model fitting. The constructed design matrix will be checked again to fit the recurrent event data framework if any observation with missing covariates is removed.

The model fitting process involves minimization of negative log likelihood function, which calls function constrOptim internally. help(constrOptim) for more details.

The argument start is an optional list that allows users to specify the initial guess for the parameter values for the minimization of negative log likelihood function. The available numeric vector elements in the list include

The argument control allows users to control the process of minimization of negative log likelihood function passed to constrOptim and specify the boundary knots of baseline rate function.

Value

A rateReg object, whose slots include

References

Fu, H., Luo, J., & Qu, Y. (2016). Hypoglycemic events analysis via recurrent time-to-event (HEART) models. Journal Of Biopharmaceutical Statistics, 26(2), 280–298.

See Also

summary,rateReg-method for summary of fitted model; coef,rateReg-method for estimated covariate coefficients; confint,rateReg-method for confidence interval of covariate coefficients; baseRate,rateReg-method for estimated coefficients of baseline rate function; mcf,rateReg-method for estimated MCF from a fitted model; plot,mcf.rateReg-method for plotting estimated MCF.

Examples

library(reda)

## constant rate function
(constFit <- rateReg(Recur(time, ID, event) ~ group + x1, data = simuDat))

## six pieces' piecewise constant rate function
(piecesFit <- rateReg(Recur(time, ID, event) ~ group + x1,
                      data = simuDat, subset = ID %in% 1:50,
                      knots = seq.int(28, 140, by = 28)))

## fit rate function with cubic spline
(splineFit <- rateReg(Recur(time, ID, event) ~ group + x1, data = simuDat,
                      knots = c(56, 84, 112), degree = 3))

## more specific summary
summary(constFit)
summary(piecesFit)
summary(splineFit)

## model selection based on AIC or BIC
AIC(constFit, piecesFit, splineFit)
BIC(constFit, piecesFit, splineFit)

## estimated covariate coefficients
coef(piecesFit)
coef(splineFit)

## confidence intervals for covariate coefficients
confint(piecesFit)
confint(splineFit, "x1", 0.9)
confint(splineFit, 1, 0.975)

## estimated baseline rate function
splinesBase <- baseRate(splineFit)
plot(splinesBase, conf.int = TRUE)

## estimated baseline mean cumulative function (MCF) from a fitted model
piecesMcf <- mcf(piecesFit)
plot(piecesMcf, conf.int = TRUE, col = "blueviolet")

## estimated MCF for given new data
newDat <- data.frame(x1 = rep(0, 2), group = c("Treat", "Contr"))
splineMcf <- mcf(splineFit, newdata = newDat, groupName = "Group",
                 groupLevels = c("Treatment", "Control"))
plot(splineMcf, conf.int = TRUE, lty = c(1, 5))

## example of further customization by ggplot2
library(ggplot2)
plot(splineMcf) +
    geom_ribbon(aes(x = time, ymin = lower,
                    ymax = upper, fill = Group),
                data = splineMcf@MCF, alpha = 0.2) +
    xlab("Days")

[Package reda version 0.5.4 Index]