step_regex {recipes} | R Documentation |
Detect a regular expression
Description
step_regex()
creates a specification of a recipe step that will create a
new dummy variable based on a regular expression.
Usage
step_regex(
recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
options = list(),
result = make.names(pattern),
input = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("regex")
)
Arguments
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
A single selector function to choose which variable
will be searched for the regex pattern. The selector should resolve
to a single variable. See |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
pattern |
A character string containing a regular
expression (or character string for |
options |
A list of options to |
result |
A single character value for the name of the new variable. It should be a valid column name. |
input |
A single character value for the name of the
variable being searched. This is |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, result
, and id
:
- terms
character, the selectors or variables selected
- result
character, new column name
- id
character, id of this step
Case weights
The underlying operation does not allow for case weights.
See Also
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_date()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_other()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
Examples
data(covers, package = "modeldata")
rec <- recipe(~description, covers) %>%
step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
step_regex(description, pattern = "ratake families")
rec2 <- prep(rec, training = covers)
rec2
with_dummies <- bake(rec2, new_data = covers)
with_dummies
tidy(rec, number = 1)
tidy(rec2, number = 1)