step_kpca {recipes} | R Documentation |
Kernel PCA signal extraction
Description
step_kpca()
creates a specification of a recipe step that will convert
numeric data into one or more principal components using a kernel basis
expansion.
Usage
step_kpca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
options = list(kernel = "rbfdot", kpar = list(sigma = 0.2)),
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca")
)
Arguments
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. See |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
num_comp |
The number of components to retain as new predictors.
If |
res |
An S4 |
columns |
A character string of the selected variable names. This field
is a placeholder and will be populated once |
options |
A list of options to |
prefix |
A character string for the prefix of the resulting new variables. See notes below. |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Details
When performing kPCA with step_kpca()
, you must choose the kernel
function (and any important kernel parameters). This step uses the
kernlab package; the reference below discusses the types of kernels
available and their parameter(s). These specifications can be made in the
kernel
and kpar
slots of the options
argument to step_kpca()
.
Consider using step_kpca_rbf()
for a radial basis function kernel or
step_kpca_poly()
for a polynomial kernel.
Kernel principal component analysis (kPCA) is an extension of a PCA analysis that conducts the calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic kernel function were used, each variable would be represented by its original values as well as its square. This nonlinear mapping is used during the PCA analysis and can potentially help find better representations of the original data.
This step requires the kernlab package. If not installed, the step will stop with a prompt about installing the package.
As with ordinary PCA, it is important to center and scale the variables
prior to computing PCA components (step_normalize()
can be used for
this purpose).
The argument num_comp
controls the number of components that will be retained
(the original variables that are used to derive the components are removed from
the data). The new components will have names that begin with prefix
and a
sequence of numbers. The variable names are padded with zeros. For example, if
num_comp < 10
, their names will be kPC1
- kPC9
. If num_comp = 101
,
the names would be kPC1
- kPC101
.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
tidy() results
When you tidy()
this step, a tibble with column
terms
(the selectors or variables selected) is returned.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
and id
:
- terms
character, the selectors or variables selected
- id
character, id of this step
Case weights
The underlying operation does not allow for case weights.
References
Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture Notes in Computer Science, 1327, 583-588.
Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel methods in R. Journal of Statistical Software, 11(1), 1-20.
See Also
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_ica()
,
step_isomap()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
Examples
library(ggplot2)
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
kpca_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors())
kpca_estimates <- prep(kpca_trans, training = biomass_tr)
kpca_te <- bake(kpca_estimates, biomass_te)
ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
geom_point() +
coord_equal()
tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)