step_date {recipes} | R Documentation |
Date feature generator
Description
step_date()
creates a specification of a recipe step that will convert
date data into one or more factor or numeric variables.
Usage
step_date(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,
ordinal = FALSE,
locale = clock::clock_locale()$labels,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("date")
)
Arguments
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. The selected variables should have class |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
features |
A character string that includes at least one
of the following values: |
abbr |
A logical. Only available for features |
label |
A logical. Only available for features
|
ordinal |
A logical: should factors be ordered? Only
available for features |
locale |
Locale to be used for |
columns |
A character string of the selected variable names. This field
is a placeholder and will be populated once |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Details
Unlike some other steps, step_date
does not
remove the original date variables by default. Set keep_original_cols
to FALSE
to remove them.
See step_time()
if you want to calculate features that are smaller than
days.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Tidying
When you tidy()
this step, a tibble with columns
terms
(the selectors or variables selected), value
(the feature
names), and ordinal
(a logical) is returned.
When you tidy()
this step, a tibble is returned with
columns terms
, value
, ordinal
, and id
:
- terms
character, the selectors or variables selected
- value
character, the feature names
- ordinal
logical, are factors ordered
- id
character, id of this step
Case weights
The underlying operation does not allow for case weights.
See Also
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_other()
,
step_regex()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
Examples
library(lubridate)
examples <- data.frame(
Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10)
)
date_rec <- recipe(~ Dan + Stefan, examples) %>%
step_date(all_predictors())
tidy(date_rec, number = 1)
date_rec <- prep(date_rec, training = examples)
date_values <- bake(date_rec, new_data = examples)
date_values
tidy(date_rec, number = 1)