| has_role {recipes} | R Documentation |
Role Selection
Description
has_role(), all_predictors(), and all_outcomes() can be used to
select variables in a formula that have certain roles.
In most cases, the right approach for users will be use to use the
predictor-specific selectors such as all_numeric_predictors() and
all_nominal_predictors(). In general you should be careful about using
-all_outcomes() if a *_predictors() selector would do what you want.
Similarly, has_type(), all_numeric(), all_integer(), all_double(),
all_nominal(), all_ordered(), all_unordered(), all_factor(),
all_string(), all_date() and all_datetime() are used to select columns
based on their data type.
all_factor() captures ordered and unordered factors, all_string()
captures characters, all_unordered() captures unordered factors and
characters, all_ordered() captures ordered factors, all_nominal()
captures characters, unordered and ordered factors.
all_integer() captures integers, all_double() captures doubles,
all_numeric() captures all kinds of numeric.
all_date() captures Date() variables, all_datetime() captures
POSIXct() variables.
See selections for more details.
current_info() is an internal function.
All of these functions have have limited utility outside of column selection in step functions.
Usage
has_role(match = "predictor")
has_type(match = "numeric")
all_outcomes()
all_predictors()
all_date()
all_date_predictors()
all_datetime()
all_datetime_predictors()
all_double()
all_double_predictors()
all_factor()
all_factor_predictors()
all_integer()
all_integer_predictors()
all_logical()
all_logical_predictors()
all_nominal()
all_nominal_predictors()
all_numeric()
all_numeric_predictors()
all_ordered()
all_ordered_predictors()
all_string()
all_string_predictors()
all_unordered()
all_unordered_predictors()
current_info()
Arguments
match |
A single character string for the query. Exact matching is used (i.e. regular expressions won't work). |
Value
Selector functions return an integer vector.
current_info() returns an environment with objects vars and data.
Examples
data(biomass, package = "modeldata")
rec <- recipe(biomass) %>%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"
) %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")
recipe_info <- summary(rec)
recipe_info
# Centering on all predictors except carbon
rec %>%
step_center(all_predictors(), -carbon) %>%
prep(training = biomass) %>%
bake(new_data = NULL)