steelplates {rebmix} | R Documentation |
Steel Plates Faults Recognition Data
Description
These data are the results of an extraction process from images of faults of steel plates. There are seven different faults: Pastry (1), Z_Scratch (2), K_Scratch (3), Stains (4), Dirtiness (5), Bumps (6), Other faults (7).
Usage
data(steelplates)
Format
steelplates
is a data frame with 1941 cases (rows) and 28 variables (columns) named:
-
X_Minimum
integer. -
X_Maximum
integer. -
Y_Minimum
integer. -
Y_Maximum
integer. -
Pixels_Areas
integer. -
X_Perimeter
integer. -
Y_Perimeter
integer. -
Sum_of_Luminosity
integer. -
Minimum_of_Luminosity
integer. -
Maximum_of_Luminosity
integer. -
Length_of_Conveyer
integer. -
TypeOfSteel_A300
binary. -
TypeOfSteel_A400
binary. -
Steel_Plate_Thickness
integer. -
Edges_Index
continuous. -
Empty_Index
continuous. -
Square_Index
continuous. -
Outside_X_Index
continuous. -
Edges_X_Index
continuous. -
Edges_Y_Index
continuous. -
Outside_Global_Index
continuous. -
LogOfAreas
continuous. -
Log_X_Index
continuous. -
Log_Y_Index
continuous. -
Orientation_Index
continuous. -
Luminosity_Index
continuous. -
SigmoidOfAreas
continuous. -
Class
discrete1
,2
,3
,4
,5
,6
or7
.
Source
A. Asuncion and D. J. Newman. Uci machine learning repository, 2007. http://archive.ics.uci.edu/ml/.
References
M. Buscema, S. Terzi, W. Tastle. A new meta-classifier. Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 2010. doi:10.1109/NAFIPS.2010.5548298.
M. Buscema. MetaNet*: The theory of independent judges. Substance Use & Misuse. 33(2):439-461, 1998. doi:10.3109/10826089809115875.
Examples
## Not run:
data(steelplates)
# Split dataset into train (75
set.seed(3)
Steelplates <- split(p = 0.75, Dataset = steelplates, class = 28)
# Estimate number of components, component weights and component
# parameters for train subsets.
steelplatesest <- REBMIX(model = "REBMVNORM",
Dataset = a.train(Steelplates),
Preprocessing = "histogram",
cmax = 15,
Criterion = "BIC")
# Classification.
steelplatescla <- RCLSMIX(model = "RCLSMVNORM",
x = list(steelplatesest),
Dataset = a.test(Steelplates),
Zt = a.Zt(Steelplates))
steelplatescla
summary(steelplatescla)
## End(Not run)