bins-methods {rebmix} | R Documentation |
Binning of Data
Description
Returns the list of data frames containing bin means \bar{\bm{y}}_{1}, \ldots, \bar{\bm{y}}_{v}
and frequencies k_{1}, \ldots, k_{v}
for the histogram preprocessing.
Usage
## S4 method for signature 'list'
bins(Dataset = list(), K = matrix(),
ymin = numeric(), ymax = numeric(), ...)
## ... and for other signatures
Arguments
Dataset |
a list of length |
K |
a matrix of size |
ymin |
a vector of length |
ymax |
a vector of length |
... |
currently not used. |
Methods
signature(x = "list")
a list of data frames.
Author(s)
Branislav Panic, Marko Nagode
References
M. Nagode. Finite mixture modeling via REBMIX. Journal of Algorithms and Optimization, 3(2):14-28, 2015. https://repozitorij.uni-lj.si/Dokument.php?id=127674&lang=eng.
Examples
# Generate multivariate normal datasets.
n <- c(7, 10)
Theta <- new("RNGMVNORM.Theta", c = 2, d = 2)
a.theta1(Theta, 1) <- c(8, 6)
a.theta1(Theta, 2) <- c(6, 8)
a.theta2(Theta, 1) <- c(8, 2, 2, 4)
a.theta2(Theta, 2) <- c(2, 1, 1, 4)
sim2d <- RNGMIX(model = "RNGMVNORM",
Dataset.name = paste("sim2d_", 1:2, sep = ""),
rseed = -1,
n = n,
Theta = a.Theta(Theta))
# Calculate optimal numbers of bins.
opt.k <- optbins(Dataset = sim2d@Dataset,
Rule = "Knuth equal",
kmin = 1,
kmax = 20)
opt.k
Y <- bins(Dataset = sim2d@Dataset, K = opt.k)
Y
opt.k <- optbins(Dataset = sim2d@Dataset,
Rule = "Knuth unequal",
kmin = 1,
kmax = 20)
opt.k
Y <- bins(Dataset = sim2d@Dataset, K = opt.k)
Y