boot-methods {rebmix} | R Documentation |
Parametric or Nonparametric Bootstrap for Standard Error and Coefficient of Variation Estimation
Description
Returns as default the boot output for mixtures of conditionally independent normal,
lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities. If
x
is of class RNGMVNORM
the boot output for mixtures of multivariate normal
component densities with unrestricted variance-covariance matrices is returned.
Usage
## S4 method for signature 'REBMIX'
boot(x = NULL, rseed = -1, pos = 1, Bootstrap = "parametric",
B = 100, n = numeric(), replace = TRUE, prob = numeric(), ...)
## ... and for other signatures
## S4 method for signature 'REBMIX.boot'
summary(object, ...)
## ... and for other signatures
Arguments
x |
see Methods section below. |
rseed |
set the random seed to any negative integer value to initialize the sequence. The first bootstrap dataset corresponds to it.
For each next bootstrap dataset the random seed is decremented |
pos |
a desired row number in |
Bootstrap |
a character giving the bootstrap type. One of default |
B |
number of bootstrap datasets. The default value is |
n |
number of observations. The default value is |
replace |
logical. The sampling is with replacement if |
prob |
a vector of length |
... |
maximum number of components |
object |
see Methods section below. |
Value
Returns an object of class REBMIX.boot
or REBMVNORM.boot
.
Methods
signature(x = "REBMIX")
an object of class
REBMIX
for mixtures of conditionally independent normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities.signature(x = "REBMVNORM")
an object of class
REBMVNORM
for mixtures of multivariate normal component densities with unrestricted variance-covariance matrices.signature(object = "REBMIX")
an object of class
REBMIX
.signature(object = "REBMVNORM")
an object of class
REBMVNORM
.
Author(s)
Marko Nagode
References
G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New York, 2000.
Examples
## Not run:
data(weibull)
# Create object of class EM.Control.
EM <- new("EM.Control", strategy = "single", variant = "EM",
acceleration = "fixed", acceleration.multiplier = 1.0, tolerance = 1.0E-4,
maximum.iterations = 1000)
# Estimate number of components, component weights and component parameters.
weibullest <- REBMIX(Dataset = list(weibull),
Preprocessing = "kernel density estimation",
cmin = 2,
cmax = 4,
Criterion = "BIC",
pdf = "Weibull",
EMcontrol = EM)
# Plot finite mixture.
plot(weibullest, what = c("pdf", "marginal cdf", "IC", "logL", "D"),
nrow = 3, ncol = 2, npts = 1000)
# Bootstrap finite mixture.
weibullboot <- boot(x = weibullest, Bootstrap = "nonparametric", B = 10)
weibullboot
## End(Not run)