| RCLSMIX-class {rebmix} | R Documentation |
Class "RCLSMIX"
Description
Object of class RCLSMIX.
Objects from the Class
Objects can be created by calls of the form new("RCLSMIX", ...). Accessor methods for the slots are a.o(x = NULL),
a.Dataset(x = NULL), a.s(x = NULL), a.ntrain(x = NULL), a.P(x = NULL), a.ntest(x = NULL), a.Zt(x = NULL),
a.Zp(x = NULL), a.CM(x = NULL), a.Accuracy(x = NULL), a.Error(x = NULL), a.Precision(x = NULL), a.Sensitivity(x = NULL),
a.Specificity(x = NULL) and a.Chunks(x = NULL), where x stands for an object of class RCLSMIX.
Slots
x:-
a list of objects of class
REBMIXof lengthoobtained by runningREBMIXong = 1, \ldots, strain datasetsY_{\mathrm{train}g}all of lengthn_{\mathrm{train}g}. For the train datasets the corresponding class membership\bm{\Omega}_{g}is known. This yieldsn_{\mathrm{train}} = \sum_{g = 1}^{s} n_{\mathrm{train}g}, whileY_{\mathrm{train}q} \cap Y_{\mathrm{train}g} = \emptysetfor allq \neq g. Each object in the list corresponds to one chunk, e.g.,(y_{1j}, y_{3j})^{\top}. o:-
number of chunks
o.Y = \{\bm{y}_{j}; \ j = 1, \ldots, n\}is an observedd-dimensional dataset of sizenof vector observations\bm{y}_{j} = (y_{1j}, \ldots, y_{dj})^{\top}and is partitioned into train and test datasets. Vector observations\bm{y}_{j}may further be split intoochunks when runningREBMIX, e.g., ford = 6ando = 3the set of chunks substituting\bm{y}_{j}may be as follows(y_{1j}, y_{3j})^{\top},(y_{2j}, y_{4j}, y_{6j})^{\top}andy_{5j}. Dataset:-
a data frame containing test dataset
Y_{\mathrm{test}}of lengthn_{\mathrm{test}}. For the test dataset the corresponding class membership\bm{\Omega}_{g}is not known. s:-
finite set of size
sof classes\bm{\Omega} = \{\bm{\Omega}_{g}; \ g = 1, \ldots, s\}. ntrain:-
a vector of length
scontaining numbers of observations in train datasetsY_{\mathrm{train}g}. P:-
a vector of length
scontaining prior probabilitiesP(\bm{\Omega}_{g}) = \frac{n_{\mathrm{train}g}}{n_{\mathrm{train}}}. ntest:-
number of observations in test dataset
Y_{\mathrm{test}}. Zt:-
a factor of true class membership
\bm{\Omega}_{g}for the test dataset. Zp:-
a factor of predictive class membership
\bm{\Omega}_{g}for the test dataset. CM:-
a table containing confusion matrix for multiclass classifier. It contains number
x_{qg}of test observations with the true classqthat are classified into the classg, whereq, g = 1, \ldots, s. Accuracy:-
proportion of all test observations that are classified correctly.
\mathrm{Accuracy} = \frac{\sum_{g = 1}^{s} x_{gg}}{n_{\mathrm{test}}}. Error:-
proportion of all test observations that are classified wrongly.
\mathrm{Error} = 1 - \mathrm{Accuracy}. Precision:-
a vector containing proportions of predictive observations in class
gthat are classified correctly into classg.\mathrm{Precision}(g) = \frac{x_{gg}}{\sum_{q = 1}^{s} x_{qg}}. Sensitivity:-
a vector containing proportions of test observations in class
gthat are classified correctly into classg.\mathrm{Sensitivity}(g) = \frac{x_{gg}}{\sum_{q = 1}^{s} x_{gq}}. Specificity:-
a vector containing proportions of test observations that are not in class
gand are classified into the nongclass.\mathrm{Specificity}(g) = \frac{n_{\mathrm{test}} - \sum_{q = 1}^{s} x_{qg}}{n_{\mathrm{test}} - \sum_{q = 1}^{s} x_{gq}}. Chunks:-
a vector containing selected chunks.
Author(s)
Marko Nagode
References
D. M. Dziuda. Data Mining for Genomics and Proteomics: Analysis of Gene and Protein Expression Data. John Wiley & Sons, New York, 2010.