RCLSMIX-class {rebmix} | R Documentation |
Class "RCLSMIX"
Description
Object of class RCLSMIX
.
Objects from the Class
Objects can be created by calls of the form new("RCLSMIX", ...)
. Accessor methods for the slots are a.o(x = NULL)
,
a.Dataset(x = NULL)
, a.s(x = NULL)
, a.ntrain(x = NULL)
, a.P(x = NULL)
, a.ntest(x = NULL)
, a.Zt(x = NULL)
,
a.Zp(x = NULL)
, a.CM(x = NULL)
, a.Accuracy(x = NULL)
, a.Error(x = NULL)
, a.Precision(x = NULL)
, a.Sensitivity(x = NULL)
,
a.Specificity(x = NULL)
and a.Chunks(x = NULL)
, where x
stands for an object of class RCLSMIX
.
Slots
x
:-
a list of objects of class
REBMIX
of lengtho
obtained by runningREBMIX
ong = 1, \ldots, s
train datasetsY_{\mathrm{train}g}
all of lengthn_{\mathrm{train}g}
. For the train datasets the corresponding class membership\bm{\Omega}_{g}
is known. This yieldsn_{\mathrm{train}} = \sum_{g = 1}^{s} n_{\mathrm{train}g}
, whileY_{\mathrm{train}q} \cap Y_{\mathrm{train}g} = \emptyset
for allq \neq g
. Each object in the list corresponds to one chunk, e.g.,(y_{1j}, y_{3j})^{\top}
. o
:-
number of chunks
o
.Y = \{\bm{y}_{j}; \ j = 1, \ldots, n\}
is an observedd
-dimensional dataset of sizen
of vector observations\bm{y}_{j} = (y_{1j}, \ldots, y_{dj})^{\top}
and is partitioned into train and test datasets. Vector observations\bm{y}_{j}
may further be split intoo
chunks when runningREBMIX
, e.g., ford = 6
ando = 3
the set of chunks substituting\bm{y}_{j}
may be as follows(y_{1j}, y_{3j})^{\top}
,(y_{2j}, y_{4j}, y_{6j})^{\top}
andy_{5j}
. Dataset
:-
a data frame containing test dataset
Y_{\mathrm{test}}
of lengthn_{\mathrm{test}}
. For the test dataset the corresponding class membership\bm{\Omega}_{g}
is not known. s
:-
finite set of size
s
of classes\bm{\Omega} = \{\bm{\Omega}_{g}; \ g = 1, \ldots, s\}
. ntrain
:-
a vector of length
s
containing numbers of observations in train datasetsY_{\mathrm{train}g}
. P
:-
a vector of length
s
containing prior probabilitiesP(\bm{\Omega}_{g}) = \frac{n_{\mathrm{train}g}}{n_{\mathrm{train}}}
. ntest
:-
number of observations in test dataset
Y_{\mathrm{test}}
. Zt
:-
a factor of true class membership
\bm{\Omega}_{g}
for the test dataset. Zp
:-
a factor of predictive class membership
\bm{\Omega}_{g}
for the test dataset. CM
:-
a table containing confusion matrix for multiclass classifier. It contains number
x_{qg}
of test observations with the true classq
that are classified into the classg
, whereq, g = 1, \ldots, s
. Accuracy
:-
proportion of all test observations that are classified correctly.
\mathrm{Accuracy} = \frac{\sum_{g = 1}^{s} x_{gg}}{n_{\mathrm{test}}}
. Error
:-
proportion of all test observations that are classified wrongly.
\mathrm{Error} = 1 - \mathrm{Accuracy}
. Precision
:-
a vector containing proportions of predictive observations in class
g
that are classified correctly into classg
.\mathrm{Precision}(g) = \frac{x_{gg}}{\sum_{q = 1}^{s} x_{qg}}
. Sensitivity
:-
a vector containing proportions of test observations in class
g
that are classified correctly into classg
.\mathrm{Sensitivity}(g) = \frac{x_{gg}}{\sum_{q = 1}^{s} x_{gq}}
. Specificity
:-
a vector containing proportions of test observations that are not in class
g
and are classified into the nong
class.\mathrm{Specificity}(g) = \frac{n_{\mathrm{test}} - \sum_{q = 1}^{s} x_{qg}}{n_{\mathrm{test}} - \sum_{q = 1}^{s} x_{gq}}
. Chunks
:-
a vector containing selected chunks.
Author(s)
Marko Nagode
References
D. M. Dziuda. Data Mining for Genomics and Proteomics: Analysis of Gene and Protein Expression Data. John Wiley & Sons, New York, 2010.