RCLRMIX-methods {rebmix} | R Documentation |
Predicts Cluster Membership Based Upon a Model Trained by REBMIX
Description
Returns as default the RCLRMIX algorithm output for mixtures of conditionally independent normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities, following the methodology proposed in the article cited in the references. If model
equals "RCLRMVNORM"
output for mixtures of multivariate normal component densities with unrestricted variance-covariance matrices is returned.
Usage
## S4 method for signature 'RCLRMIX'
RCLRMIX(model = "RCLRMIX", x = NULL, Dataset = NULL,
pos = 1, Zt = factor(), Rule = character(), ...)
## ... and for other signatures
## S4 method for signature 'RCLRMIX'
summary(object, ...)
## ... and for other signatures
Arguments
model |
see Methods section below. |
x |
an object of class |
Dataset |
a data frame or an object of class |
pos |
a desired row number in |
Zt |
a factor of true cluster membership. The default value is |
Rule |
a character containing the merging rule. One of |
object |
see Methods section below. |
... |
currently not used. |
Value
Returns an object of class RCLRMIX
or RCLRMVNORM
.
Methods
signature(model = "RCLRMIX")
a character giving the default class name
"RCLRMIX"
for mixtures of conditionally independent normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities.signature(model = "RCLRMVNORM")
a character giving the class name
"RCLRMVNORM"
for mixtures of multivariate normal component densities with unrestricted variance-covariance matrices.signature(object = "RCLRMIX")
an object of class
RCLRMIX
.signature(object = "RCLRMVNORM")
an object of class
RCLRMVNORM
.
Author(s)
Marko Nagode
References
J. P. Baudry, A. E. Raftery, G. Celeux, K. Lo and R. Gottardo. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 19(2):332-353, 2010. doi:10.1198/jcgs.2010.08111
Examples
devAskNewPage(ask = TRUE)
# Generate Poisson dataset.
n <- c(500, 200, 400)
Theta <- new("RNGMIX.Theta", c = 3, pdf = "Poisson")
a.theta1(Theta) <- c(3, 12, 36)
poisson <- RNGMIX(Dataset.name = "Poisson_1", n = n, Theta = a.Theta(Theta))
# Estimate number of components, component weights and component parameters.
EM <- new("EM.Control", strategy = "exhaustive")
poissonest <- REBMIX(Dataset = a.Dataset(poisson),
Preprocessing = "histogram",
cmax = 6,
Criterion = "BIC",
pdf = rep("Poisson", 1),
EMcontrol = EM)
summary(poissonest)
# Plot finite mixture.
plot(poissonest)
# Cluster dataset.
poissonclu <- RCLRMIX(x = poissonest, Zt = a.Zt(poisson))
summary(poissonclu)
# Plot clusters.
plot(poissonclu)
# Create new dataset.
Dataset <- sample.int(n = 50, size = 10, replace = TRUE)
Dataset <- as.data.frame(Dataset)
# Cluster the dataset.
poissonclu <- RCLRMIX(x = poissonest, Dataset = Dataset, Rule = "Demp")
a.Dataset(poissonclu)