BFSMIX-methods {rebmix} | R Documentation |
Predicts Class Membership Based Upon the Best First Search Algorithm
Description
Returns as default the optimized RCLSMIX algorithm output for mixtures of conditionally independent normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities. If model
equals "RCLSMVNORM"
optimized output for mixtures of multivariate normal component densities with unrestricted variance-covariance matrices is returned.
Usage
## S4 method for signature 'RCLSMIX'
BFSMIX(model = "RCLSMIX", x = list(), Dataset = data.frame(),
Zt = factor(), ...)
## ... and for other signatures
Arguments
model |
see Methods section below. |
x |
a list of objects of class |
Dataset |
a data frame containing test dataset |
Zt |
a factor of true class membership |
... |
currently not used. |
Value
Returns an optimized object of class RCLSMIX
or RCLSMVNORM
.
Methods
signature(model = "RCLSMIX")
a character giving the default class name
"RCLSMIX"
for mixtures of conditionally independent normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or von Mises component densities.signature(model = "RCLSMVNORM")
a character giving the class name
"RCLSMVNORM"
for mixtures of multivariate normal component densities with unrestricted variance-covariance matrices.
Author(s)
Marko Nagode
References
R. Kohavi and G. H. John. Wrappers for feature subset selection, Artificial Intelligence, 97(1-2):273-324, 1997. doi:10.1016/S0004-3702(97)00043-X.