read_delim {readr} | R Documentation |
Read a delimited file (including CSV and TSV) into a tibble
Description
read_csv()
and read_tsv()
are special cases of the more general
read_delim()
. They're useful for reading the most common types of
flat file data, comma separated values and tab separated values,
respectively. read_csv2()
uses ;
for the field separator and ,
for the
decimal point. This format is common in some European countries.
Usage
read_delim(
file,
delim = NULL,
quote = "\"",
escape_backslash = FALSE,
escape_double = TRUE,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
comment = "",
trim_ws = FALSE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
name_repair = "unique",
num_threads = readr_threads(),
progress = show_progress(),
show_col_types = should_show_types(),
skip_empty_rows = TRUE,
lazy = should_read_lazy()
)
read_csv(
file,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
name_repair = "unique",
num_threads = readr_threads(),
progress = show_progress(),
show_col_types = should_show_types(),
skip_empty_rows = TRUE,
lazy = should_read_lazy()
)
read_csv2(
file,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
progress = show_progress(),
name_repair = "unique",
num_threads = readr_threads(),
show_col_types = should_show_types(),
skip_empty_rows = TRUE,
lazy = should_read_lazy()
)
read_tsv(
file,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
progress = show_progress(),
name_repair = "unique",
num_threads = readr_threads(),
show_col_types = should_show_types(),
skip_empty_rows = TRUE,
lazy = should_read_lazy()
)
Arguments
file |
Either a path to a file, a connection, or literal data (either a single string or a raw vector). Files ending in Literal data is most useful for examples and tests. To be recognised as
literal data, the input must be either wrapped with Using a value of |
delim |
Single character used to separate fields within a record. |
quote |
Single character used to quote strings. |
escape_backslash |
Does the file use backslashes to escape special
characters? This is more general than |
escape_double |
Does the file escape quotes by doubling them?
i.e. If this option is |
col_names |
Either If If Missing ( |
col_types |
One of If Column specifications created by Alternatively, you can use a compact string representation where each character represents one column:
By default, reading a file without a column specification will print a
message showing what |
col_select |
Columns to include in the results. You can use the same
mini-language as |
id |
The name of a column in which to store the file path. This is
useful when reading multiple input files and there is data in the file
paths, such as the data collection date. If |
locale |
The locale controls defaults that vary from place to place.
The default locale is US-centric (like R), but you can use
|
na |
Character vector of strings to interpret as missing values. Set this
option to |
quoted_na |
Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0. |
comment |
A string used to identify comments. Any text after the comment characters will be silently ignored. |
trim_ws |
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it? |
skip |
Number of lines to skip before reading data. If |
n_max |
Maximum number of lines to read. |
guess_max |
Maximum number of lines to use for guessing column types.
Will never use more than the number of lines read.
See |
name_repair |
Handling of column names. The default behaviour is to
ensure column names are
This argument is passed on as |
num_threads |
The number of processing threads to use for initial
parsing and lazy reading of data. If your data contains newlines within
fields the parser should automatically detect this and fall back to using
one thread only. However if you know your file has newlines within quoted
fields it is safest to set |
progress |
Display a progress bar? By default it will only display
in an interactive session and not while knitting a document. The automatic
progress bar can be disabled by setting option |
show_col_types |
If |
skip_empty_rows |
Should blank rows be ignored altogether? i.e. If this
option is |
lazy |
Read values lazily? By default, this is Learn more in |
Value
A tibble()
. If there are parsing problems, a warning will alert you.
You can retrieve the full details by calling problems()
on your dataset.
Examples
# Input sources -------------------------------------------------------------
# Read from a path
read_csv(readr_example("mtcars.csv"))
read_csv(readr_example("mtcars.csv.zip"))
read_csv(readr_example("mtcars.csv.bz2"))
## Not run:
# Including remote paths
read_csv("https://github.com/tidyverse/readr/raw/main/inst/extdata/mtcars.csv")
## End(Not run)
# Read from multiple file paths at once
continents <- c("africa", "americas", "asia", "europe", "oceania")
filepaths <- vapply(
paste0("mini-gapminder-", continents, ".csv"),
FUN = readr_example,
FUN.VALUE = character(1)
)
read_csv(filepaths, id = "file")
# Or directly from a string with `I()`
read_csv(I("x,y\n1,2\n3,4"))
# Column selection-----------------------------------------------------------
# Pass column names or indexes directly to select them
read_csv(readr_example("chickens.csv"), col_select = c(chicken, eggs_laid))
read_csv(readr_example("chickens.csv"), col_select = c(1, 3:4))
# Or use the selection helpers
read_csv(
readr_example("chickens.csv"),
col_select = c(starts_with("c"), last_col())
)
# You can also rename specific columns
read_csv(
readr_example("chickens.csv"),
col_select = c(egg_yield = eggs_laid, everything())
)
# Column types --------------------------------------------------------------
# By default, readr guesses the columns types, looking at `guess_max` rows.
# You can override with a compact specification:
read_csv(I("x,y\n1,2\n3,4"), col_types = "dc")
# Or with a list of column types:
read_csv(I("x,y\n1,2\n3,4"), col_types = list(col_double(), col_character()))
# If there are parsing problems, you get a warning, and can extract
# more details with problems()
y <- read_csv(I("x\n1\n2\nb"), col_types = list(col_double()))
y
problems(y)
# Column names --------------------------------------------------------------
# By default, readr duplicate name repair is noisy
read_csv(I("x,x\n1,2\n3,4"))
# Same default repair strategy, but quiet
read_csv(I("x,x\n1,2\n3,4"), name_repair = "unique_quiet")
# There's also a global option that controls verbosity of name repair
withr::with_options(
list(rlib_name_repair_verbosity = "quiet"),
read_csv(I("x,x\n1,2\n3,4"))
)
# Or use "minimal" to turn off name repair
read_csv(I("x,x\n1,2\n3,4"), name_repair = "minimal")
# File types ----------------------------------------------------------------
read_csv(I("a,b\n1.0,2.0"))
read_csv2(I("a;b\n1,0;2,0"))
read_tsv(I("a\tb\n1.0\t2.0"))
read_delim(I("a|b\n1.0|2.0"), delim = "|")