| cols {readr} | R Documentation |
Create column specification
Description
cols() includes all columns in the input data, guessing the column types
as the default. cols_only() includes only the columns you explicitly
specify, skipping the rest. In general you can substitute list() for
cols() without changing the behavior.
Usage
cols(..., .default = col_guess())
cols_only(...)
Arguments
... |
Either column objects created by |
.default |
Any named columns not explicitly overridden in |
Details
The available specifications are: (with string abbreviations in brackets)
-
col_logical()[l], containing onlyT,F,TRUEorFALSE. -
col_integer()[i], integers. -
col_double()[d], doubles. -
col_character()[c], everything else. -
col_factor(levels, ordered)[f], a fixed set of values. -
col_date(format = "")[D]: with the locale'sdate_format. -
col_time(format = "")[t]: with the locale'stime_format. -
col_datetime(format = "")[T]: ISO8601 date times -
col_number()[n], numbers containing thegrouping_mark -
col_skip()[_, -], don't import this column. -
col_guess()[?], parse using the "best" type based on the input.
See Also
Other parsers:
col_skip(),
cols_condense(),
parse_datetime(),
parse_factor(),
parse_guess(),
parse_logical(),
parse_number(),
parse_vector()
Examples
cols(a = col_integer())
cols_only(a = col_integer())
# You can also use the standard abbreviations
cols(a = "i")
cols(a = "i", b = "d", c = "_")
# You can also use multiple sets of column definitions by combining
# them like so:
t1 <- cols(
column_one = col_integer(),
column_two = col_number()
)
t2 <- cols(
column_three = col_character()
)
t3 <- t1
t3$cols <- c(t1$cols, t2$cols)
t3