rdbwdensity {rddensity} | R Documentation |
Bandwidth Selection for Manipulation Testing
Description
rdbwdensity
implements several data-driven bandwidth selection
methods useful to construct manipulation testing procedures using the local
polynomial density estimators proposed in Cattaneo, Jansson and Ma (2020).
A companion Stata
package is described in Cattaneo, Jansson and Ma (2018).
Companion command: rddensity
for manipulation (density discontinuity)
testing.
Related Stata and R packages useful for inference in regression discontinuity (RD) designs are described in the website: https://rdpackages.github.io/.
Usage
rdbwdensity(
X,
c = 0,
p = 2,
fitselect = "",
kernel = "",
vce = "",
massPoints = TRUE,
regularize = TRUE,
nLocalMin = NULL,
nUniqueMin = NULL
)
Arguments
X |
Numeric vector or one dimensional matrix/data frame, the running variable. |
c |
Numeric, specifies the threshold or cutoff value in the support of |
p |
Nonnegative integer, specifies the local polynomial order used to construct
the density estimators. Default is |
fitselect |
String, specifies the density estimation method.
|
kernel |
String, specifies the kernel function used to construct the local
polynomial estimators.
|
vce |
String, specifies the procedure used to compute the variance-covariance matrix estimator.
|
massPoints |
|
regularize |
|
nLocalMin |
Nonnegative integer, specifies the minimum number of observations in each local neighborhood.
This option will be ignored if set to |
nUniqueMin |
Nonnegative integer, specifies the minimum number of unique observations in
each local neighborhood. This option will be ignored if set to |
Value
h |
Bandwidths for density discontinuity test, left and right to the cutoff, and asymptotic variance and bias. |
N |
|
opt |
Options passed to the function. |
X_min |
Smallest observations to the left and right of the cutoff. |
X_max |
Largest observations to the left and right of the cutoff. |
Author(s)
Matias D. Cattaneo, Princeton University cattaneo@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma (maintainer), University of California San Diego. x1ma@ucsd.edu.
References
Cattaneo, M. D., M. Jansson, and X. Ma. 2018. Manipulation Testing based on Density Discontinuity. Stata Journal 18(1): 234-261. doi:10.1177/1536867X1801800115
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. doi:10.1080/01621459.2019.1635480
See Also
Examples
# Generate a random sample
set.seed(42)
x <- rnorm(2000, mean = -0.5)
# Bandwidth selection
summary(rdbwdensity(X = x, vce="jackknife"))