par_bs_ci {rcc} | R Documentation |
Parametric bootstrapped confidence intervals to control RCC
Description
This function implements the parametric bootstrap (see Section 2.3 of the referenced paper). The user supplies point estimates, standard errors and optionally, a ranking function.
Usage
par_bs_ci(beta, se = rep(1, length(beta)), rank.func = NULL, theta = beta,
level = 0.9, n.rep = 1000, use.abs = TRUE, ...)
Arguments
beta |
Parameter estimates |
se |
Estimated standard error of beta. Defaults to 1. |
rank.func |
A function that takes as first argument the t-statistics beta/se and returns a list with items order and rank. See rcc:::basic_rank for an example. If NULL, the basic_rank function will be used which ranks based on the size of the test statistics. |
theta |
Possibly shrunken estimates of E[beta]. Defaults to beta. |
level |
Confidence level |
n.rep |
Number of bootstrap replications |
use.abs |
Base the rank on abs(beta) rather than beta |
... |
Additional parameters to pass to rank.func |
Value
A data frame giving original estimates and standard errors, confidence intervals, debiased point estimates, and rank for each parameter.
Examples
#generate 100 fake parameter estimates
theta <- c(rep(0, 90), rnorm(n=10)) #vector of means
beta <- rnorm(n=100, mean=theta, sd=1)
cis <- par_bs_ci(beta=beta, n.rep=500) #calculate parametric bootstrap confidence intervals
head(cis)