cv.rbridge {rbridge} | R Documentation |
Cross-validation for rbridge
Description
Does k-fold cross-validation for rbridge, produces a plot, and returns a value for lambda
Usage
cv.rbridge(X, y, q, R, r, lambda, nfolds = 10, lambda.min = ifelse(n >
p, 0.001, 0.05), nlambda = 100, eta = 1e-07, converge = 10^10,
num_threads = 10)
Arguments
X |
|
y |
response |
q |
is the degree of norm which includes ridge regression with |
R |
is |
r |
is a
Values for |
lambda |
lambda sequence; default is NULL. It is given by user or |
nfolds |
number of folds - default is 10. |
lambda.min |
The smallest value for lambda if |
nlambda |
The number of lambda values - default is |
eta |
is a preselected small positive threshold value. It is deleted |
converge |
is the value of converge. Defaults is |
num_threads |
Number of threads used for parallel computation over the folds, |
Details
Computes cv.rbridge
Value
An object of class rbridge, a list with entries
cve |
the mean cross-validated error. |
cvse |
estimate of standard error of |
cvup |
upper curve = |
cvlo |
lower curve = |
lambda |
the values of |
nz |
number of non-zero coefficients at each |
betas |
estimated coefficient at each |
lambda.min |
value of lambda that gives minimum |
lambda.1se |
largest value of |
Author(s)
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi b.yzb@hotmail.com
See Also
Examples
set.seed(2019)
beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0)
p <- length(beta)
beta <- matrix(beta, nrow = p, ncol = 1)
p.active <- which(beta != 0)
### Restricted Matrix and vector
### Res 1
c1 <- c(1,1,0,0,1,0,0,0)
R1.mat <- matrix(c1,nrow = 1, ncol = p)
r1.vec <- as.matrix(c(6.5),1,1)
### Res 2
c2 <- c(-1,1,0,0,1,0,0,0)
R2.mat <- matrix(c2,nrow = 1, ncol = p)
r2.vec <- matrix(c(0.5),nrow = 1, ncol = 1)
### Res 3
R3.mat <- t(matrix(c(c1,c2),nrow = p, ncol = 2))
r3.vec <- matrix(c(6.5,0.5),nrow = 2, ncol = 1)
### Res 4
R4.mat = diag(1,p,p)[-p.active,]
r4.vec <- matrix(rep(0,p-length(p.active)),nrow = p-length(p.active), ncol = 1)
n = 100
X = matrix(rnorm(n*p),n,p)
y = X%*%beta + rnorm(n)
######## Model 1 based on first restrictions
model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec)
print(model1)
coef(model1,s='lambda.min')
coef(model1,s='lambda.1se')
predict(model1,newx=X[1:5,], s="lambda.min", type="response")
predict(model1, s="lambda.min",type="coefficient")
predict(model1, s="lambda.1se",type="coefficient")
######## Model 2 based on second restrictions
model2 <- cv.rbridge(X, y, q = 1, R2.mat, r2.vec)
print(model2)
coef(model2,s='lambda.min')
coef(model2,s='lambda.1se')
predict(model2,newx=X[1:5,], s="lambda.min", type="response")
predict(model2, s="lambda.min",type="coefficient")
predict(model2, s="lambda.1se",type="coefficient")
######## Model 3 based on third restrictions
model3 <- cv.rbridge(X, y, q = 1, R3.mat, r3.vec)
print(model3)
coef(model3,s='lambda.min')
coef(model3,s='lambda.1se')
predict(model3,newx=X[1:5,], s="lambda.min", type="response")
predict(model3, s="lambda.min",type="coefficient")
predict(model3, s="lambda.1se",type="coefficient")
######## Model 4 based on fourth restrictions
model4 <- cv.rbridge(X, y, q = 1, R4.mat, r4.vec)
print(model4)
coef(model4,s='lambda.min')
coef(model4,s='lambda.1se')
predict(model4,newx=X[1:5,], s="lambda.min", type="response")
predict(model4, s="lambda.min",type="coefficient")
predict(model4, s="lambda.1se",type="coefficient")