rbewmacc_opt {rbcc} | R Documentation |
Optimized Risk-based EWMA Control Charts
Description
Calculate Optimized Risk-based Univariate exponentially weighted moving average Control Chart
Usage
rbewmacc_opt(X, UC, C, n=1, lambada=0.20, nsigmas=3, K_init= 0, LKL=-5, UKL=5)
Arguments
X |
vector of variable (numeric vector). Either can be simulated using data_gen or defined by using available data set. |
UC |
vector of measuerement error (numeric vector).Either can be simulated using data_gen or defined by using available previous information. |
C |
vector of decision costs (default value is vector of 1). |
n |
the sample size for grouping. For individual obervations use n=1). |
lambada |
a weight or smoothing constant for EWMA control charts. The value is between (0,1). The defualt value is 0.20. |
nsigmas |
the charting multiplier(default value is 3) |
K_init |
Set correction component to 0 by default (default value is 0) |
LKL |
Lower limit of K parameter (default value is -5) |
UKL |
Upper limit of K parameter (default value is -5) |
Value
cost0 |
Total cost of a monitoring process |
cost1 |
Total cost of correct acceptance related to a process monitoring |
cost2 |
Total cost of decision error type 1 related to a process monitoring |
cost3 |
Total cost of decision error type 2 related to a process monitoring |
cost4 |
Total cost of correct reject related to a process monitoring |
baselimit |
UCL of a EWMA chart for a given data |
limit |
UCL of optimized risk based EWMA control chart for a given data |
real |
Real values of plotting statistic for a given data |
Observed |
Observed plotting statistic with measurement errors for a given data |
Kopt |
Optimal 'K' paramater of risk-based EWMA control chart for a given data |
Author(s)
Aamir Saghir, Attila I. Katona, Zsolt T. Kosztyan*
e-mail: kzst@gtk.uni-pannon.hu
References
KosztyƔn, Z. T., and Katona, A. I. (2016). Risk-based multivariate control chart. Expert Systems with Applications, 62, 250-262.
See Also
data_gen
, rbcc
, rbcc_opt
, rbewmacc
, rbmacc
, rbmacc_opt
, rbmcc
, rbmcc_opt
, plot.rbcc
, summary.rbcc
.
Examples
# Data generation for vector X
mu_X <- c(0) # Define data mean.
va_X <- c(1) # Define data standard deviation.
sk_X <- c(0) # Define data skewness.
ku_X <- c(3) # Define data kurtosis.
obs <- 200 # Total number of observations of a process.
X <- data_gen (obs, mu_X, va_X, sk_X, ku_X)
# Data generation for measurement error vector UC
mu_UC <- c(0) # Define mean of measurement errors.
va_UC <- c(1) # Define standard deviation of measurement errors.
sk_UC <- c(0) # Define skewness of measurement errors.
ku_UC <- c(3) # Define kurtosis of measurement errors.
UC <- data_gen(obs,mu_UC, va_UC, sk_UC, ku_UC)
C <- c(1,1,1,1) # Define a vector of decision costs.
H <- rbewmacc(X, UC, C) # for subgroups of size 1
# fit optimal risk-based EWMA control chart
H_opt <- rbewmacc_opt(X, UC, C, n=1,lambada=0.20,nsigmas=3,K_init= 0,LKL=-5,UKL=5)
plot(H_opt) # plot RBEWMACC
# with vector of proportional decision costs
C <- c(1, 5, 60, 5) # vector of decision costs
H <- rbewmacc(X, UC, C) # traditional risk-based EWMA control chat
# fit optimal risk-based EWMA control chart
H_opt <- rbewmacc_opt(X, UC, C, n=1,lambada=0.20,nsigmas=3,K_init= 0,LKL=-5,UKL=5)
plot(H_opt) # plot RBEWMACC