biasBound_condExpectation {rbbnp} | R Documentation |
Bias bound approach for conditional expectation estimation
Description
Estimates the density at a given point or across a range, and provides visualization options for density, bias, and confidence intervals.
Usage
biasBound_condExpectation(
Y,
X,
x = NULL,
h = 0.09,
alpha = 0.05,
est_Ar = NULL,
resol = 100,
xi_lb = NULL,
xi_ub = NULL,
methods_get_xi = "Schennach",
if_plot_ft = FALSE,
ora_Ar = NULL,
if_plot_conditional_mean = TRUE,
kernel.fun = "Schennach2004",
if_approx_kernel = TRUE,
kernel.resol = 1000
)
Arguments
Y |
A numerical vector of sample data. |
X |
A numerical vector of sample data. |
x |
Optional. A scalar or range of points where the density is estimated. If NULL, a range is automatically generated. |
h |
A scalar bandwidth parameter. |
alpha |
Confidence level for intervals. Default is 0.05. |
est_Ar |
Optional list of estimates for A and r. If NULL, they are computed using |
resol |
Resolution for the estimation range. Default is 100. |
xi_lb |
Optional. Lower bound for the interval of Fourier Transform frequency xi. Used for determining the range over which A and r is estimated. If NULL, it is automatically determined based on the methods_get_xi. |
xi_ub |
Optional. Upper bound for the interval of Fourier Transform frequency xi. Similar to xi_lb, it defines the upper range for A and r estimation. If NULL, the upper bound is determined based on the methods_get_xi. |
methods_get_xi |
A string specifying the method to automatically determine the xi interval if xi_lb and xi_ub are NULL. Options are "Schennach" and "Schennach_loose". If "Schennach" the range is selected based on the Theorem 2 in Schennach2020, if "Schennach_loose", it is defined by the initial interval given in Theorem 2 without selecting the xi_n. |
if_plot_ft |
Logical. If TRUE, plots the Fourier transform. |
ora_Ar |
Optional list of oracle values for A and r. |
if_plot_conditional_mean |
Logical. If TRUE, plots the conditional mean estimation. |
kernel.fun |
A string specifying the kernel function to be used. Options are "Schennach2004", "sinc", "normal", "epanechnikov". |
if_approx_kernel |
Logical. If TRUE, uses approximations for the kernel function. |
kernel.resol |
The resolution for kernel function approximation. See |
Value
A list containing various outputs including estimated values, plots, and intervals.
Examples
# Example 1: point estimation of conditional expectation of Y on X
biasBound_condExpectation(
Y = sample_data$Y,
X = sample_data$X,
x = 1,
h = 0.09,
kernel.fun = "Schennach2004"
)
# Example 2: conditional expectation of Y on X with manually selected range of xi
# biasBound_condExpectation(
# Y = sample_data$Y,
# X = sample_data$X,
# h = 0.09,
# xi_lb = 1,
# xi_ub = 12,
# kernel.fun = "Schennach2004"
# )