predict {ranktreeEnsemble} | R Documentation |
Prediction or Extract Predicted Values for Random Forest, Random Forest Rule or Boosting Models
Description
Obtain predicted values using a random forest (rfsrc)
, random forest extracted rule (rules)
or boosting (gbm)
object. If no new data is provided, it extracts the out-of-bag predicted values of the outcome for the training data.
Usage
predict(object,
newdata = NULL,
newdata.pair = FALSE, ...)
Arguments
object |
An object of class |
newdata |
Test data. If missing, the original training data is used for extracting the out-of-bag predicted values without running the model again. |
newdata.pair |
Is |
... |
Further arguments passed to or from other methods. |
Details
For the boosting (gbm)
object, the cross-validation predicted values are provided if cv.folds>=2
.
Value
value |
Predicted value of the outcome. For the random forest |
label |
Predicted label of the outcome. |
Author(s)
Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu
References
Lu M. Yin R. and Chen X.S. Ensemble Methods of Rank-Based Trees for Single Sample Classification with Gene Expression Profiles. Journal of Translational Medicine. 22, 140 (2024). doi: 10.1186/s12967-024-04940-2
Examples
data(tnbc)
######################################################
# Random Forest
######################################################
obj <- rforest(subtype~., data = tnbc[1:100,c(1:5,337)])
predict(obj)$label
predict(obj, tnbc[101:110,1:5])$label
datp <- pair(tnbc[101:110,1:5])
predict(obj, datp, newdata.pair = TRUE)$label
######################################################
# Random Forest Extracted Rule
######################################################
objr <- extract.rules(obj)
predict(objr)$label[1:5]
predict(obj, tnbc[101:110,1:5])$label
######################################################
# Boosting
######################################################
obj <- rboost(subtype~., data = tnbc[1:100,c(1:5,337)])
predict(obj)$label
predict(obj, tnbc[101:110,1:5])$label