PlotBeads {rankinma} | R Documentation |
Illustrate beading plot
Description
PlotBeads() is a function for illustrating beading plot.
Usage
PlotBeads(
data,
scaleX = "Numeric",
txtValue = "Effects",
color = NULL,
whichRoB = "None",
lgcBlind = FALSE,
szPnt = NULL,
szFntTtl = NULL,
szFntTtlX = NULL,
szFntX = NULL,
szFntY = NULL,
szFntTxt = NULL,
szFntLgnd = NULL,
rotateTxt = 60
)
Arguments
data |
DATA of metrics for treatment ranking. |
scaleX |
STRING for indicating scale on the x axis. |
txtValue |
STRING for indicating labels of metrics or effects on each point. |
color |
LIST of colors for treatments in a network meta-analysis. |
whichRoB |
STRING for indicating how to display risk of bias for each treatment. |
lgcBlind |
LOGIC value for indicating whether to display with color-blind friendly. |
szPnt |
NUMERIC value for indicating point size of ranking metrics. |
szFntTtl |
NUMERIC value for indicating font size of main title. |
szFntTtlX |
NUMERIC value for indicating font size of title on X-axis. |
szFntX |
NUMERIC value for indicating font size of numeric scale on X-axis. |
szFntY |
NUMERIC value for indicating font size of outcome name(s). |
szFntTxt |
NUMERIC value for indicating font size of value of each point. |
szFntLgnd |
NUMERIC value for indicating legend font size. |
rotateTxt |
NUMERIC value between 0 and 360 for rotating labels of text values of each point. |
Value
PlotBeads() returns a beading plot.
Author(s)
Chiehfeng Chen & Enoch Kang
References
Chen, C., Chuang, Y.C., Chan, E., Chen, J.H., Hou, W.H., & Kang, E. (2023). Beading plot: A novel graphics for ranking interventions in network evidence. PREPRINT (Version 1) available at Research Square.
See Also
Examples
## Not run:
#library(netmeta)
#data(Senn2013)
#nma <- netmeta(TE, seTE, treat1, treat2,
#studlab, data = Senn2013, sm = "SMD")
# Get SUCRA
#nma.1 <- GetMetrics(nma, outcome = "HbA1c.random", prefer = "small", metrics = "SUCRA",
#model = "random", simt = 1000)
#nma.2 <- GetMetrics(nma, outcome = "HbA1c.common", prefer = "small", metrics = "SUCRA",
#model = "common", simt = 1000)
# Combine metrics of multiple outcomes
#dataMetrics <- rbind(nma.1, nma.2)
# Set data for rankinma
#dataRankinma <- SetMetrics(dataMetrics, tx = tx, outcome = outcome,
#metrics = SUCRA, metrics.name = "SUCRA")
# Illustrate beading plot
#PlotBeads(data = dataRankinma)
## End(Not run)