GetMetrics {rankinma} | R Documentation |
Get treatment ranking metrics from network meta-analysis output
Description
GetMetrics() is a function for gathering metrics of treatment ranking from netmeta output.
Usage
GetMetrics(
data,
outcome = NULL,
prefer = NULL,
metrics = NULL,
model = "random",
simt = 1000,
rob = NULL
)
Arguments
data |
DATA of netmeta output. |
outcome |
STRING for name of outcome. |
prefer |
STRING for indicating which direction is beneficial treatment effect in terms of "small" and "large" values in statistic test. |
metrics |
STRING for metrics of treatment ranking in terms of "SUCRA", "P-score", and "P-best" for the value of surface under the cumulative ranking curve, P-score, and probability of achieving the best treatment. |
model |
STRING for analysis model in terms of "random" and "common" for random-effects model and common-effect model. |
simt |
INTEGER for times of simulations to estimate surface under the cumulative ranking curve (SUCRA). |
rob |
STRING for column name of risk of bias. |
Value
GetMetrics() returns a data.frame with three columns, including treatment, metrics of treatment ranking, and outcome name.
References
Rücker, G., & Schwarzer, G. (2015). Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC medical research methodology, 15(1), 1-9.
Salanti, G., Ades, A. E., & Ioannidis, J. P. (2011). Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. Journal of clinical epidemiology, 64(2), 163-171.
See Also
Examples
## Not run:
#library(netmeta)
#data(Senn2013)
#nma <- netmeta(TE, seTE, treat1, treat2,
#studlab, data = Senn2013, sm = "SMD")
# Get SUCRA
#dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small",
#metrics = "SUCRA", model = "random", simt = 1000)
# Get P-score
#dataMetrics <- GetMetrics(nma, outcome = "HbA1c", prefer = "small",
#metrics = "P-score", model = "random", simt = 1000)
## End(Not run)