plot.rfsrc {randomForestSRC} | R Documentation |
Plot Error Rate and Variable Importance from a RF-SRC analysis
Description
Plot out-of-bag (OOB) error rates and variable importance (VIMP) from a RF-SRC analysis. This is the default plot method for the package.
Usage
## S3 method for class 'rfsrc'
plot(x, m.target = NULL,
plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)
Arguments
x |
An object of class |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
plots.one.page |
Should plots be placed on one page? |
sorted |
Should variables be sorted by importance values? |
verbose |
Should VIMP be printed? |
... |
Further arguments passed to or from other methods. |
Details
Plot cumulative OOB error rates as a function of number of trees and
variable importance (VIMP) if available. Note that the default
settings are now such that the error rate is no longer calculated on
every tree and VIMP is only calculated if requested. To get OOB error
rates for ever tree, use the option block.size = 1
when
growing or restoring the forest. Likewise, to view VIMP, use the option
importance
when growing or restoring the forest.
Author(s)
Hemant Ishwaran and Udaya B. Kogalur
References
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Examples
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
iris.obj <- rfsrc(Species ~ ., data = iris,
block.size = 1, importance = TRUE)
plot(iris.obj)
## ------------------------------------------------------------
## competing risk example
## ------------------------------------------------------------
## use the pbc data from the survival package
## events are transplant (1) and death (2)
if (library("survival", logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL
plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1))
}
## ------------------------------------------------------------
## multivariate mixed forests
## ------------------------------------------------------------
mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size = 1)
plot(mv.obj, m.target = "carb")
plot(mv.obj, m.target = "mpg")
plot(mv.obj, m.target = "cyl")