DCSBM.estimate {randnet} | R Documentation |
Estimates DCSBM model
Description
Estimates DCSBM model by given community labels
Usage
DCSBM.estimate(A, g)
Arguments
A |
adjacency matrix |
g |
vector of community labels for the nodes |
Details
Estimation is based on maximum likelhood.
Value
A list object of
Phat |
estimated probability matrix |
B |
the B matrix with block connection probability, up to a scaling constant |
Psi |
vector of of degree parameter theta, up to a scaling constant |
Author(s)
Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li tianxili@virginia.edu
References
B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in networks. Physical Review E, 83(1):016107, 2011.
See Also
SBM.estimate
Examples
dt <- BlockModel.Gen(30,300,K=3,beta=0.2,rho=0.9,simple=FALSE,power=TRUE)
A <- dt$A
ssc <- reg.SSP(A,K=3,lap=TRUE)
est <- DCSBM.estimate(A,ssc$cluster)
[Package randnet version 0.7 Index]