adapt_S {ramcmc} | R Documentation |
Update the Proposal of RAM Algorithm
Description
Given the lower triangular matrix S obtained from the Cholesky decomposition of the shape
of the proposal distribution, function adapt_S
updates S according to the RAM algorithm.
Usage
adapt_S(S, u, current, n, target = 0.234, gamma = 2/3)
Arguments
S |
A lower triangular matrix corresponding to the Cholesky decomposition of the scale of the proposal distribution. |
u |
A vector with with length matching with the dimensions of S. |
current |
The current acceptance probability. |
n |
Scaling parameter corresponding to the current iteration number. |
target |
The target acceptance rate. Default is 0.234. |
gamma |
Scaling parameter. Default is 2/3. |
Value
If the resulting matrix is positive definite, an updated value of S. Otherwise original S is returned.
Note
If the downdating would result non-positive definite matrix, no adaptation is performed.
References
Matti Vihola (2012). "Robust adaptive Metropolis algorithm with coerced acceptance rate". Statistics and Computing, 22: 997. doi:10.1007/s11222-011-9269-5
Examples
# sample from standard normal distribution
# use proposals from the uniform distribution on
# interval (-s, s), where we adapt s
adapt_mcmc <- function(n = 10000, s) {
x <- numeric(n)
loglik_old <- dnorm(x[1], log = TRUE)
for (i in 2:n) {
u <- s * runif(1, -1, 1)
prop <- x[i] + u
loglik <- dnorm(prop, log = TRUE)
accept_prob <- min(1, exp(loglik - loglik_old))
if (runif(1) < accept_prob) {
x[i] <- prop
loglik_old <- loglik
} else {
x[i] <- x[i - 1]
}
# Adapt only during the burn-in
if (i < n/2) {
s <- adapt_S(s, u, accept_prob, i)
}
}
list(x = x[(n/2):n], s = s)
}
out <- adapt_mcmc(1e5, 2)
out$s
hist(out$x)
# acceptance rate:
1 / mean(rle(out$x)$lengths)