rainfarm {rainfarmr} | R Documentation |
Perform RainFARM downscaling
Description
The input array is downscaled to finer spatial resolution
using the RainFARM stochastic precipitation downscaling method.
Orographic correction weights can be applied as described in
Terzago et al. (2018) doi: 10.5194/nhess-18-2825-2018.
Precipitation can be conserved globally (fglob
), using convolution
(fsmooth
) or over the original coarse-scale boxes.
Usage
rainfarm(r, slope, nf, weights = 1, fglob = FALSE, fsmooth = TRUE,
verbose = FALSE)
Arguments
r |
matrix or array with large-scale field to downscale. Can be a
three-dimensional array with multiple frames at different times.
Spatial downscaling is performed separately for each element of the
third dimension of |
slope |
spatial spectral slope. |
nf |
refinement factor for spatial downscaling. |
weights |
matrix with weights for orographic downscaling generated
by the |
fglob |
logical to conserve global average over domain. |
fsmooth |
logical to use smoothing for conservation.
If neither |
verbose |
logical to provide some progress report. |
Value
The downscaled array.
Author(s)
Jost von Hardenberg, j.vonhardenberg@isac.cnr.it
References
Terzago, S. et al. (2018). NHESS 18(11), 2825–2840 doi: 10.5194/nhess-18-2825-2018; D'Onofrio et al. (2014). J of Hydrometeorology 15, 830-843 doi: 10.1175/JHM-D-13-096.1; Rebora et. al. (2006), JHM 7, 724 doi: 10.1175/JHM517.1.
Examples
# Make some sample synthetic rainfall data
r <- exp(rnorm(4 * 4 * 10))
dim(r) <- c(4, 4, 10)
r[ , , 1]
# [,1] [,2] [,3] [,4]
# [1,] 1.8459816 1.8536550 2.1600665 1.3102116
# [2,] 1.3851011 1.4647348 0.2708219 0.4571810
# [3,] 0.2492451 0.8227134 0.4790567 1.9320403
# [4,] 0.5985922 3.3065678 2.1282795 0.6849944
# Downscale with spectral slope=1.7 to size 32x32
rd <- rainfarm(r, 1.7, 8, fsmooth=FALSE)
# Verify that downscaled data maintained original box averages
agg(rd[ , , 1], 4)
# [,1] [,2] [,3] [,4]
# [1,] 1.8459816 1.8536550 2.1600665 1.3102116
# [2,] 1.3851011 1.4647348 0.2708219 0.4571810
# [3,] 0.2492451 0.8227134 0.4790567 1.9320403
# [4,] 0.5985922 3.3065678 2.1282795 0.6849944