rainette2 {rainette}R Documentation

Corpus clustering based on the Reinert method - Double clustering

Description

Corpus clustering based on the Reinert method - Double clustering

Usage

rainette2(
  x,
  y = NULL,
  max_k = 5,
  min_segment_size1 = 10,
  min_segment_size2 = 15,
  doc_id = NULL,
  min_members = 10,
  min_chi2 = 3.84,
  parallel = FALSE,
  full = TRUE,
  uc_size1,
  uc_size2,
  ...
)

Arguments

x

either a quanteda dfm object or the result of rainette()

y

if x is a rainette() result, this must be another rainette() result from same dfm but with different uc size.

max_k

maximum number of clusters to compute

min_segment_size1

if x is a dfm, minimum uc size for first clustering

min_segment_size2

if x is a dfm, minimum uc size for second clustering

doc_id

character name of a dtm docvar which identifies source documents.

min_members

minimum members of each cluster

min_chi2

minimum chi2 for each cluster

parallel

if TRUE, use parallel::mclapply to compute partitions (won't work on Windows, uses more RAM)

full

if TRUE, all crossed groups are kept to compute optimal partitions, otherwise only the most mutually associated groups are kept.

uc_size1

deprecated, use min_segment_size1 instead

uc_size2

deprecated, use min_segment_size2 instead

...

if x is a dfm object, parameters passed to rainette() for both simple clusterings

Details

You can pass a quanteda dfm as x object, the function then performs two simple clustering with varying minimum uc size, and then proceed to find optimal partitions based on the results of both clusterings.

If both clusterings have already been computed, you can pass them as x and y arguments and the function will only look for optimal partitions.

doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

If full = FALSE, computation may be much faster, but the chi2 criterion will be the only one available for best partition detection, and the result may not be optimal.

For more details on optimal partitions search algorithm, please see package vignettes.

Value

A tibble with optimal partitions found for each available value of k as rows, and the following columns :

References

See Also

rainette(), cutree_rainette2(), rainette2_plot(), rainette2_explor()

Examples


require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)

res1 <- rainette(dtm, k = 5, min_segment_size = 10)
res2 <- rainette(dtm, k = 5, min_segment_size = 15)

res <- rainette2(res1, res2, max_k = 4)



[Package rainette version 0.3.1.1 Index]