optPenalty.LOOCV {rags2ridges} | R Documentation |
Select optimal penalty parameter by leave-one-out cross-validation
Description
This function is now deprecated. Please use optPenalty.kCV
instead.
Usage
optPenalty.LOOCV(
Y,
lambdaMin,
lambdaMax,
step,
type = "Alt",
cor = FALSE,
target = default.target(covML(Y)),
output = "light",
graph = TRUE,
verbose = TRUE
)
Arguments
Y |
Data |
lambdaMin |
A |
lambdaMax |
A |
step |
An |
type |
A |
cor |
A |
target |
A target |
output |
A |
graph |
A |
verbose |
A |
Details
Function that selects the optimal penalty parameter for the
ridgeP
call by usage of leave-one-out cross-validation. Its
output includes (a.o.) the precision matrix under the optimal value of the
penalty parameter.
The function calculates a cross-validated negative log-likelihood score
(using a regularized ridge estimator for the precision matrix) for each
value of the penalty parameter contained in the search grid by way of
leave-one-out cross-validation. The value of the penalty parameter that
achieves the lowest cross-validated negative log-likelihood score is deemed
optimal. The penalty parameter must be positive such that lambdaMin
must be a positive scalar. The maximum allowable value of lambdaMax
depends on the type of ridge estimator employed. For details on the type of
ridge estimator one may use (one of: "Alt", "ArchI", "ArchII") see
ridgeP
. The ouput consists of an object of class list (see
below). When output = "light"
(default) only the optLambda
and
optPrec
elements of the list are given.
Value
An object of class list:
optLambda |
A |
optPrec |
A |
lambdas |
A |
LLs |
A |
Note
When cor = TRUE
correlation matrices are used in the
computation of the (cross-validated) negative log-likelihood score, i.e.,
the leave-one-out sample covariance matrix is a matrix on the correlation
scale. When performing evaluation on the correlation scale the data are
assumed to be standardized. If cor = TRUE
and one wishes to used the
default target specification one may consider using target =
default.target(covML(Y, cor = TRUE))
. This gives a default target under the
assumption of standardized data.
Author(s)
Carel F.W. Peeters <carel.peeters@wur.nl>, Wessel N. van Wieringen
See Also
ridgeP
, optPenalty.LOOCVauto
,
optPenalty.aLOOCV
,
default.target
,
covML
Examples
## Obtain some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
## Obtain regularized precision under optimal penalty
OPT <- optPenalty.LOOCV(X, lambdaMin = .5, lambdaMax = 30, step = 100); OPT
OPT$optLambda # Optimal penalty
OPT$optPrec # Regularized precision under optimal penalty
## Another example with standardized data
X <- scale(X, center = TRUE, scale = TRUE)
OPT <- optPenalty.LOOCV(X, lambdaMin = .5, lambdaMax = 30, step = 100, cor = TRUE,
target = default.target(covML(X, cor = TRUE))); OPT
OPT$optLambda # Optimal penalty
OPT$optPrec # Regularized precision under optimal penalty