momentS {rags2ridges} | R Documentation |
Moments of the sample covariance matrix.
Description
Calculates the moments of the sample covariance matrix. It assumes that the
summands (the outer products of the samples' random data vector) that
constitute the sample covariance matrix follow a Wishart-distribution with
scale parameter \mathbf{\Sigma}
and shape parameter \nu
. The
latter is equal to the number of summands in the sample covariance estimate.
Usage
momentS(Sigma, shape, moment = 1)
Arguments
Sigma |
Positive-definite |
shape |
A |
moment |
An |
Value
The r
-th moment of a sample covariance matrix:
E(\mathbf{S}^r)
.
Author(s)
Wessel N. van Wieringen.
References
Lesac, G., Massam, H. (2004), "All invariant moments of the Wishart distribution", Scandinavian Journal of Statistics, 31(2), 295-318.
Examples
# create scale parameter
Sigma <- matrix(c(1, 0.5, 0, 0.5, 1, 0, 0, 0, 1), byrow=TRUE, ncol=3)
# evaluate expectation of the square of a sample covariance matrix
# that is assumed to Wishart-distributed random variable with the
# above scale parameter Sigma and shape parameter equal to 40.
momentS(Sigma, 40, 2)