fused.test {rags2ridges} | R Documentation |
Test the necessity of fusion
Description
Function for testing the null hypothesis that all population precision matrices are equal and thus the necessity for the fusion penalty. Note, the test performed is conditional on the supplied penalties and targets.
Usage
fused.test(Ylist, Tlist, lambda, n.permutations = 100, verbose = FALSE, ...)
Arguments
Ylist |
A |
Tlist |
A |
lambda |
A non-negative, symmetric |
n.permutations |
The number of permutations to approximate the null distribution. Default is 100. Should be increased if sufficient computing power is available. |
verbose |
Print out extra progress information |
... |
Arguments passed to |
Details
The function computes the observed score statistic U_obs
using the
fused ridge estimator on the given data. Next, the score statistic is
computed a number of times (given by n.permutations
) under the
null-hypothesis by effectively permuting the class labels of the data.
Value
Returns a list
values containing the observed test statistic
and the test statistic under the null distribution.
Author(s)
Anders Ellern Bilgrau, Carel F.W. Peeters <carel.peeters@wur.nl>, Wessel, N. van Wieringen
References
Bilgrau, A.E., Peeters, C.F.W., Eriksen, P.S., Boegsted, M., and van Wieringen, W.N. (2020). Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes. Journal of Machine Learning Research, 21(26): 1-52.
See Also
Examples
ns <- c(10, 5, 23)
Ylist <- createS(ns, p = 15, topology = "banded", dataset = TRUE)
# Use the identity target matrix for each class
Tlist <- replicate(length(ns), diag(15), simplify = FALSE)
# Do the test
lm <- matrix(10, 3, 3)
diag(lm) <- 1
ft <- fused.test(Ylist, Tlist, lambda = lm,
n.permutations = 500)
print(ft)
# Summary spits out a bit more information
summary(ft)
# The returned object can alo be plotted via
hist(ft)
# or via the alias
plot(ft)
# Customization and parameters work a usual:
hist(ft, col = "steelblue", main = "Null distribution", add.extra = FALSE,
xlab = "Score statistic", freq = FALSE)